ﻻ يوجد ملخص باللغة العربية
Cross-domain sequential recommendation is the task of predict the next item that the user is most likely to interact with based on past sequential behavior from multiple domains. One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains. Previous studies have investigated the flow of behavioral information by exploring the connection between items from different domains. The flow of knowledge (i.e., the connection between knowledge from different domains) has so far been neglected. In this paper, we propose a mixed information flow network for cross-domain sequential recommendation to consider both the flow of behavioral information and the flow of knowledge by incorporating a behavior transfer unit and a knowledge transfer unit. The proposed mixed information flow network is able to decide when cross-domain information should be used and, if so, which cross-domain information should be used to enrich the sequence representation according to users current preferences. Extensive experiments conducted on four e-commerce datasets demonstrate that mixed information flow network is able to further improve recommendation performance in different domains by modeling mixed information flow.
Sequential recommendation is a task in which one models and uses sequential information about user behavior for recommendation purposes. We study sequential recommendation in a particularly challenging context, in which multiple individual users shar
Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most exis
Making accurate recommendations for cold-start users has been a longstanding and critical challenge for recommender systems (RS). Cross-domain recommendations (CDR) offer a solution to tackle such a cold-start problem when there is no sufficient data
Recently, recommender systems that aim to suggest personalized lists of items for users to interact with online have drawn a lot of attention. In fact, many of these state-of-the-art techniques have been deep learning based. Recent studies have shown
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem by aggregating and transferring user preferences across multiple category domains. Therefore, it has great potential to improve click-through-