ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental study of the $^{11}text{B}(p,3alpha)gamma$ reaction at $E_p = 0.5-2.7$ MeV

66   0   0.0 ( 0 )
 نشر من قبل Oliver Kirsebom
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Our understanding of the low-lying resonance structure in $^{12}$C remains incomplete. We have used the $^{11}text{B}(p,3alpha)gamma$ reaction at proton energies of $E_p=0.5-2.7$ MeV as a selective probe of the excitation region above the $3alpha$ threshold in $^{12}$C. Transitions to individual levels in $^{12}$C were identified by measuring the 3$alpha$ final state with a compact array of charged-particle detectors. Previously identified transitions to narrow levels were confirmed and new transitions to broader levels were observed for the first time. Here, we report cross sections, deduce partial $gamma$-decay widths and discuss the relative importance of direct and resonant capture mechanisms.



قيم البحث

اقرأ أيضاً

The quantification of isotopes content in materials is extremely important in many research and industrial fields. Accurate determination of boron concentration is very critical in semiconductor, superconductor and steel industry, in environmental an d medical applications as well as in nuclear and astrophysics research. The detection of B isotopes and of their ratio in synthetic and natural materials may be accomplished by gamma spectroscopy using the $^{10}$B(p,$alpha_1 gamma$)$^7$Be and $^{11}$B(p,$gamma$)$^{12}$C reactions at low proton energy. Here, the $^{10}$B(p,$alpha_1 gamma$)$^7$Be cross section is reported in the center of mass energy range 0.35 to 1.8 MeV. The $E_gamma$= 429 keV $gamma$ rays were detected at 45$^circ$ and 90$^circ$ using a NaI(Tl) and an HPGe detectors, respectively. In the presented energy range, previous cross sections data revealed discrepancies and normalisation issues. Existing data are compared to the new absolute measurement and discussed. The present data have been subtracted from a previous measurement of the total cross section to derive the contribution of the $alpha_0$ channel.
The Gamow-Teller strength distribution from ${}^{88}$Sr was extracted from a $(t,{}^{3}text{He}+gamma)$ experiment at 115 MeV/$u$ to constrain estimates for the electron-capture rates on nuclei around $N=50$, between and including $^{78}$Ni and $^{88 }$Sr, which are important for the late evolution of core-collapse supernovae. The observed strength below an excitation energy of 8 MeV was consistent with zero and below 10 MeV amounted to $0.1pm0.05$. Except for a very-weak transition that could come from the 2.231-MeV $1^{+}$ state, no $gamma$ lines that could be associated with the decay of known $1^{+}$ states were identified. The derived electron-capture rate from the measured strength distribution is more than an order of magnitude smaller than rates based on the single-state approximation presently used in astrophysical simulations for most nuclei near $N=50$. Rates based on shell-model and quasiparticle random-phase approximation calculations that account for Pauli blocking and core-polarization effects provide better estimates than the single-state approximation, although a relatively strong transition to the first $1^{+}$ state in $^{88}$Rb is not observed in the data. Pauli unblocking effects due to high stellar temperatures could partially counter the low electron-capture rates. The new data serves as a zero-temperature benchmark for constraining models used to estimate such effects.
In the present work, we report our in depth study of 12C(p,pgamma)12C reaction both experimentally and theoretically with proton beam energy ranging from 8 MeV to 22 MeV. The angular distributions were measured at six different angles. We discuss the gamma angular distributions, total cross sections values for 4.438, 9.64, 12.7 and 15.1 MeV states. We also describe the theoretical interpretation of our measurements using optical model analysis. We also report the branching ratios from our measurements. For the first time, we have measured the the cross section and branching ratio for the 9.64 MeV state.
The p( uc{11}{Li}, uc{9}{Li})t reaction has been studied for the first time at an incident energy of 3$A$ MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differenti al cross sectionshave been determined for transitions to the uc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different uc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.
The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128 Ba(g,a)124Xe was found to affect the abundance of the p nucleus 124Xe. Since the stellar rate for this reaction cannot be determined by a measurement directly, the aim of the present work was to measure the cross section of the inverse 124Xe(a,g)128Ba reaction and to compare the results with statistical model predictions. Of great importance is the fact that data below the (a,n) threshold was obtained. Studying simultaneously the 124Xe(a,n)127Ba reaction channel at higher energy allowed to further identify the source of a discrepancy between data and prediction. The 124Xe + alpha cross sections were measured with the activation method using a thin window 124Xe gas cell. The studied energy range was between E = 11 and 15 MeV close above the astrophysically relevant energy range. The obtained cross sections are compared with statistical model calculations. The experimental cross sections are smaller than standard predictions previously used in astrophysical calculations. As dominating source of the difference, the theoretical alpha width was identified. The experimental data suggest an alpha width lower by at least a factor of 0.125 in the astrophysical energy range. An upper limit for the 128Ba(g,a)124Xe stellar rate was inferred from our measurement. The impact of this rate was studied in two different models for core-collapse supernova explosions of 25 solar mass stars. A significant contribution to the 124Xe abundance via this reaction path would only be possible when the rate was increased above the previous standard value. Since the experimental data rule this out, they also demonstrate the closure of this production path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا