ﻻ يوجد ملخص باللغة العربية
The p( uc{11}{Li}, uc{9}{Li})t reaction has been studied for the first time at an incident energy of 3$A$ MeV delivered by the new ISAC-2 facility at TRIUMF. An active target detector MAYA, build at GANIL, was used for the measurement. The differential cross sectionshave been determined for transitions to the uc{9}{Li} ground andthe first excited states in a wide range of scattering angles. Multistep transfer calculations using different uc{11}{Li} model wave functions, shows that wave functions with strong correlations between the halo neutrons are the most successful in reproducing the observation.
The nuclear charge radius of Li-11 has been determined for the first time by high precision laser spectroscopy. On-line measurements at TRIUMF-ISAC yielded a Li-7 - Li-11 isotope shift (IS) of 25101.23(13) MHz for the Doppler-free 2s - 3s transition.
Recently, we applied an $ab$ $initio$ method, the no-core shell model combined with the resonating group method, to the transfer reactions with light p-shell nuclei as targets and deuteron as the projectile. In particular, we studied the elastic scat
The $^8$Li($n,gamma$)$^9$Li reaction plays an important role in several astrophysics scenarios. It cannot be measured directly and indirect experiments have so far provided only cross section limits. Theoretical predictions differ by an order of magn
$^{6}$He+$t$ cluster states of exited $^{9}$Li have been measured by 32.7 MeV/nucleon $^{9}$Li beams bombarding on $^{208}$Pb target. Two resonant states are clearly observed with the excitation energies at 9.8 MeV and 12.6 MeV and spin-parity of 3/2
The structure of the extremely proton-rich nucleus $^{11}_{~8}$O$_3$, the mirror of the two-neutron halo nucleus $^{11}_{~3}$Li$_8$, has been studied experimentally for the first time. Following two-neutron knockout reactions with a $^{13}$O beam, th