ﻻ يوجد ملخص باللغة العربية
One way to analyse the behaviour of machine learning models is through local explanations that highlight input features that maximally influence model predictions. Sensitivity analysis, which involves analysing the effect of input perturbations on model predictions, is one of the methods to generate local explanations. Meaningful input perturbations are essential for generating reliable explanations, but there exists limited work on what such perturbations are and how to perform them. This work investigates these questions in the context of machine listening models that analyse audio. Specifically, we use a state-of-the-art deep singing voice detection (SVD) model to analyse whether explanations from SoundLIME (a local explanation method) are sensitive to how the method perturbs model inputs. The results demonstrate that SoundLIME explanations are sensitive to the content in the occluded input regions. We further propose and demonstrate a novel method for quantitatively identifying suitable content type(s) for reliably occluding inputs of machine listening models. The results for the SVD model suggest that the average magnitude of input mel-spectrogram bins is the most suitable content type for temporal explanations.
Emerging wireless technologies, such as 5G and beyond, are bringing new use cases to the forefront, one of the most prominent being machine learning empowered health care. One of the notable modern medical concerns that impose an immense worldwide he
Advances in machine reading comprehension (MRC) rely heavily on the collection of large scale human-annotated examples in the form of (question, paragraph, answer) triples. In contrast, humans are typically able to generalize with only a few examples
With the surge of online meetings, it has become more critical than ever to provide high-quality speech audio and live captioning under various noise conditions. However, most monaural speech enhancement (SE) models introduce processing artifacts and
Attractor-based end-to-end diarization is achieving comparable accuracy to the carefully tuned conventional clustering-based methods on challenging datasets. However, the main drawback is that it cannot deal with the case where the number of speakers
Deep speaker embedding has demonstrated state-of-the-art performance in speaker recognition tasks. However, one potential issue with this approach is that the speaker vectors derived from deep embedding models tend to be non-Gaussian for each individ