ﻻ يوجد ملخص باللغة العربية
Emerging wireless technologies, such as 5G and beyond, are bringing new use cases to the forefront, one of the most prominent being machine learning empowered health care. One of the notable modern medical concerns that impose an immense worldwide health burden are respiratory infections. Since cough is an essential symptom of many respiratory infections, an automated system to screen for respiratory diseases based on raw cough data would have a multitude of beneficial research and medical applications. In literature, machine learning has already been successfully used to detect cough events in controlled environments. In this paper, we present a low complexity, automated recognition and diagnostic tool for screening respiratory infections that utilizes Convolutional Neural Networks (CNNs) to detect cough within environment audio and diagnose three potential illnesses (i.e., bronchitis, bronchiolitis and pertussis) based on their unique cough audio features. Both proposed detection and diagnosis models achieve an accuracy of over 89%, while also remaining computationally efficient. Results show that the proposed system is successfully able to detect and separate cough events from background noise. Moreover, the proposed single diagnosis model is capable of distinguishing between different illnesses without the need of separate models.
Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in
Multilingual automatic speech recognition (ASR) models have shown great promise in recent years because of the simplified model training and deployment process. Conventional methods either train a universal multilingual model without taking any langu
In speech recognition problems, data scarcity often poses an issue due to the willingness of humans to provide large amounts of data for learning and classification. In this work, we take a set of 5 spoken Harvard sentences from 7 subjects and consid
One way to analyse the behaviour of machine learning models is through local explanations that highlight input features that maximally influence model predictions. Sensitivity analysis, which involves analysing the effect of input perturbations on mo
Predicting the execution time of queries is an important problem with applications in scheduling, service level agreements and error detection. During query planning, a cost is associated with the chosen execution plan and used to rank competing plan