ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of $beta$ Cep pulsations in the eclipsing binary V453 Cygni

101   0   0.0 ( 0 )
 نشر من قبل John Southworth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

V453 Cyg is an eclipsing binary containing 14 Msun and 11 Msun stars in an eccentric short-period orbit. We have discovered $beta$ Cep-type pulsations in this system using TESS data. We identify seven significant pulsation frequencies, between 2.37 and 10.51 d$^{-1}$, in the primary star. These include six frequencies which are separated by yet significantly offset from harmonics of the orbital frequency, indicating they are tidally-perturbed modes. We have determined the physical properties of the system to high precision: V453 Cyg A is the first $beta$ Cep pulsator with a precise mass measurement. The system is a vital tracer of the physical processes that govern the evolution of massive single and binary stars.



قيم البحث

اقرأ أيضاً

70 - G. Torres 2016
We report new spectroscopic and photometric observations of the main-sequence, detached, eccentric, double-lined eclipsing binary V541 Cyg (P = 15.34 days, e = 0.468). Using these observations together with existing measurements we determine the comp onent masses and radii to better than 1% precision: M1 = 2.335 +0.017/-0.013 MSun, M2 = 2.260 +0.016/-0.013 MSun, R1 = 1.859 +0.012/-0.009 RSun, and R2 = 1.808 +0.015/-0.013 RSun. The nearly identical B9.5 stars have estimated temperatures of 10650 +/- 200 K and 10350 +/- 200 K. A comparison of these properties with current stellar evolution models shows excellent agreement at an age of about 190 Myr and [Fe/H] approximately -0.18. Both components are found to be rotating at the pseudo-synchronous rate. The system displays a slow periastron advance that is dominated by General Relativity (GR), and has previously been claimed to be slower than predicted by theory. Our new measurement, dw/dt = 0.859 +0.042/-0.017 deg/century, has an 88% contribution from GR and agrees with the expected rate within the uncertainties. We also clarify the use of the gravity darkening coefficients in the light-curve fitting program EBOP, a version of which we use here.
We report spectroscopic observations of the 2.63 day, detached, F-type main-sequence eclipsing binary V2154 Cyg. We use our observations together with existing $uvby$ photometric measurements to derive accurate absolute masses and radii for the stars good to better than 1.5%. We obtain masses of M1 = 1.269 +/- 0.017 M(Sun) and M2 = 0.7542 +/- 0.0059 M(Sun), radii of R1 = 1.477 +/- 0.012 R(Sun) and R2 = 0.7232 +/- 0.0091 R(Sun), and effective temperatures of 6770 +/- 150 K and 5020 +/- 150 K for the primary and secondary stars, respectively. Both components appear to have their rotations synchronized with the motion in the circular orbit. A comparison of the properties of the primary with current stellar evolution models gives good agreement for a metallicity of [Fe/H] = -0.17, which is consistent with photometric estimates, and an age of about 2.2 Gyr. On the other hand, the K2 secondary is larger than predicted for its mass by about 4%. Similar discrepancies are known to exist for other cool stars, and are generally ascribed to stellar activity. The system is in fact an X-ray source, and we argue that the main site of the activity is the secondary star. Indirect estimates give a strength of about 1 kG for the surface magnetic field on that star. A previously known close visual companion to V2154 Cyg is shown to be physically bound, making the system a hierarchical triple.
The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.
360 - Xiang Gao , Kai Li , Xing Gao 2021
The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($ f=33.9(pm4.9)%$) with a mass ratio of 0.285. It is a W-subtype contact binary, that is, the component with less mass is hotter than the component with more mass, and the light curves are asymmetric (OConnell effect), which can be explained by the existence of a hot spot on the component with less mass. The orbital inclination is $i=88.3^{circ}$, indicating that it is a totally eclipsing binary, so the parameters obtained are reliable. Through the O-C analyzing, it is found that the orbital period decreases at the rate of $dot{P}=-3.90(pm0.06)times 10^{-7}d cdot yr^{-1}$, which indicates that the mass transfer occurs from the more massive component to the less massive one.
HD 156424 (B2 V) is a little-studied magnetic hot star in the Sco OB4 association, previously noted to display both high-frequency radial velocity (RV) variability and magnetospheric H$alpha$ emission. We have analysed the TESS light curve, and find that it is a $beta$ Cep pulsator with 11 detectable frequencies, 4 of which are independent $p$-modes. The strongest frequency is also detectable in RVs from ground-based high-resolution spectroscopy. RVs also show a long-term variation, suggestive of orbital motion with a period of $sim$years; significant differences in the frequencies determined from TESS and RV datasets are consistent with a light-time effect from orbital motion. Close examination of the stars spectrum reveals the presence of a spectroscopic companion, however as its RV is not variable it cannot be responsible for the orbital motion and we therefore infer that the system is a hierarchical triple with a so-far undetected third star. Reanalysis of LSD profiles from ESPaDOnS and HARPSpol spectropolarimetry reveals the surprising presence of a strong magnetic field in the companion star, with $langle B_z rangle$ about $+1.5$ kG as compared to $langle B_z rangle sim -0.8$ kG for the primary. HD 156424 is thus the second hot binary with two magnetic stars. We are unable to identify a rotational period for HD 156424A. The magnetospheric H$alpha$ emission appears to originate around HD 156424B. Using H$alpha$, as well as other variable spectral lines, we determine a period of about 0.52 d, making HD 156424B one of the most rapidly rotating magnetic hot stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا