ترغب بنشر مسار تعليمي؟ اضغط هنا

MOBSTER -- V: Discovery of a magnetic companion star to the magnetic $beta$ Cep pulsator HD 156424

91   0   0.0 ( 0 )
 نشر من قبل Matthew Shultz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 156424 (B2 V) is a little-studied magnetic hot star in the Sco OB4 association, previously noted to display both high-frequency radial velocity (RV) variability and magnetospheric H$alpha$ emission. We have analysed the TESS light curve, and find that it is a $beta$ Cep pulsator with 11 detectable frequencies, 4 of which are independent $p$-modes. The strongest frequency is also detectable in RVs from ground-based high-resolution spectroscopy. RVs also show a long-term variation, suggestive of orbital motion with a period of $sim$years; significant differences in the frequencies determined from TESS and RV datasets are consistent with a light-time effect from orbital motion. Close examination of the stars spectrum reveals the presence of a spectroscopic companion, however as its RV is not variable it cannot be responsible for the orbital motion and we therefore infer that the system is a hierarchical triple with a so-far undetected third star. Reanalysis of LSD profiles from ESPaDOnS and HARPSpol spectropolarimetry reveals the surprising presence of a strong magnetic field in the companion star, with $langle B_z rangle$ about $+1.5$ kG as compared to $langle B_z rangle sim -0.8$ kG for the primary. HD 156424 is thus the second hot binary with two magnetic stars. We are unable to identify a rotational period for HD 156424A. The magnetospheric H$alpha$ emission appears to originate around HD 156424B. Using H$alpha$, as well as other variable spectral lines, we determine a period of about 0.52 d, making HD 156424B one of the most rapidly rotating magnetic hot stars.

قيم البحث

اقرأ أيضاً

We report the discovery of an L dwarf companion to the A3V star beta{} Circini. VVV J151721.49-585131.5, or beta{} Cir B, was identified in a proper motion and parallax catalogue of the Vista Variables in the V{i}a L{a}ctea survey as having near infr ared luminosity and colour indicative of an early L dwarf, and a proper motion and parallax consistent with that of beta{} Cir. The projected separation of $sim$3.6 corresponds to $6656$ au, which is unusually wide. The most recent published estimate of the age of the primary combined with our own estimate based on newer isochrones yields an age of $370-500$ Myr. The system therefore serves as a useful benchmark at an age greater than that of the Pleiades brown dwarfs and most other young L dwarf benchmarks. We have obtained a medium resolution echelle spectrum of the companion which indicates a spectral type of L1.0$pm$0.5 and lacks the typical signatures of low surface gravity seen in younger brown dwarfs. This suggests that signs of low surface gravity disappear from the spectra of early L dwarfs by an age of $sim370-500$ Myr, as expected from theoretical isochrones. The mass of beta{} Cir B is estimated from the BHAC15 isochrones as $0.056pm0.007$ M$_{odot}$.
HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as ou t-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M$_odot$. The primarys longitudinal magnetic field $langle B_z rangle$ varies between about $+100$ and $-250$ G, suggesting a surface magnetic dipole strength $B_{rm d} = 850$~G. Bayesian analysis of the Stokes $V$ profiles indicates $B_{rm d} = 650$~G for the primary and $B_{rm d} < 110$ G for the secondary. The primarys line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that stars chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete.
70 - G.A. Wade , A. Pigulski , S. Begy 2019
Recent BRITE-Constellation space photometry of the slowly rotating, magnetic $beta$ Cep pulsator $xi^1$ CMa permits a new analysis of its pulsation properties. Analysis of the two-colour BRITE data reveals the well-known single pulsation period of $0 .209$ d, along with its first and second harmonics. A similar analysis of SMEI and TESS observations yields compatible results, with the higher precision TESS observations also revealing several low-amplitude modes with frequencies below 5 d$^{-1}$; some of these are likely $g$ modes. The phase lag between photometric and radial velocity maxima - equal to 0.334 cycles - is significantly larger than the typical value of $1/4$ observed in other large-amplitude $beta$ Cep stars. The phase lag, as well as the strong dependence of phase of maximum light on wavelength, can be reconciled with seismic models only if the dominant mode is the fundamental radial mode. We employ all published photometric and radial velocity measurements, spanning over a century, to evaluate the stability of the pulsation period. The $O-C$ diagram exhibits a clear parabolic shape consistent with a mean rate of period change $dot P=0.34pm 0.02$ s/cen. The residuals from the best-fit parabola exhibit scatter that is substantially larger than the uncertainties. In particular, dense sampling obtained during the past $sim$20 years suggests more complex and rapid period variations. Those data cannot be coherently phased with the mean rate of period change, and instead require $dot Psim0.9$ s/cen. We examine the potential contributions of binarity, stellar evolution, and stellar rotation and magnetism to understand the apparent period evolution.
We report the discovery of a low-mass companion to the nearby (d = 47 pc) F7V star HD 984. The companion is detected 0.19 away from its host star in the L band with the Apodizing Phase Plate on NaCo/VLT and was recovered by L-band non-coronagraphic i maging data taken a few days later. We confirm the companion is co-moving with the star with SINFONI integral field spectrograph H+K data. We present the first published data obtained with SINFONI in pupil-tracking mode. HD 984 has been argued to be a kinematic member of the 30 Myr-old Columba group, and its HR diagram position is not altogether inconsistent with being a ZAMS star of this age. By consolidating different age indicators, including isochronal age, coronal X-ray emission, and stellar rotation, we independently estimate a main sequence age of 115$pm$85 Myr (95% CL) which does not rely on this kinematic association. The mass of directly imaged companions are usually inferred from theoretical evolutionary tracks, which are highly dependent on the age of the star. Based on the age extrema, we demonstrate that with our photometric data alone, the companions mass is highly uncertain: between 33 and 96 M$_{rm Jup}$ (0.03-0.09 M$_{odot}$) using the COND evolutionary models. We compare the companions SINFONI spectrum with field dwarf spectra to break this degeneracy. Based on the slope and shape of the spectrum in the H-band, we conclude that the companion is an M$6.0pm0.5$ dwarf. The age of the system is not further constrained by the companion, as M dwarfs are poorly fit on low-mass evolutionary tracks. This discovery emphasizes the importance of obtaining a spectrum to spectral type companions around F-stars.
We undertake another attempt towards seismic modelling of the most intensive studied main sequence pulsators of the early B spectral type, $ u$ Eridani. Our analysis is extended by a requirement of fitting not only pulsational frequencies but also th e complex amplitude of the bolometric flux variation, $f$, related to each mode frequency. This approach, called {it complex asteroseismology}, provides a unique test of stellar parameters, atmospheres and opacities. In particular, the concordance of the empirical and theoretical values of $f$ we obtained for the high-order g mode opens a new gate in seismic studies of the main-sequence hybrid pulsators. The most intriguing and challenging result is that whereas an agreement of the theoretical and empirical values of $f$ for the radial mode can be achieved only with the OPAL data, a preference for the OP tables is derived from the analysis of the high-order gravity mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا