ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute dimensions of the eccentric eclipsing binary V541 Cygni

71   0   0.0 ( 0 )
 نشر من قبل Guillermo Torres
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Torres




اسأل ChatGPT حول البحث

We report new spectroscopic and photometric observations of the main-sequence, detached, eccentric, double-lined eclipsing binary V541 Cyg (P = 15.34 days, e = 0.468). Using these observations together with existing measurements we determine the component masses and radii to better than 1% precision: M1 = 2.335 +0.017/-0.013 MSun, M2 = 2.260 +0.016/-0.013 MSun, R1 = 1.859 +0.012/-0.009 RSun, and R2 = 1.808 +0.015/-0.013 RSun. The nearly identical B9.5 stars have estimated temperatures of 10650 +/- 200 K and 10350 +/- 200 K. A comparison of these properties with current stellar evolution models shows excellent agreement at an age of about 190 Myr and [Fe/H] approximately -0.18. Both components are found to be rotating at the pseudo-synchronous rate. The system displays a slow periastron advance that is dominated by General Relativity (GR), and has previously been claimed to be slower than predicted by theory. Our new measurement, dw/dt = 0.859 +0.042/-0.017 deg/century, has an 88% contribution from GR and agrees with the expected rate within the uncertainties. We also clarify the use of the gravity darkening coefficients in the light-curve fitting program EBOP, a version of which we use here.



قيم البحث

اقرأ أيضاً

We report spectroscopic observations of the 2.63 day, detached, F-type main-sequence eclipsing binary V2154 Cyg. We use our observations together with existing $uvby$ photometric measurements to derive accurate absolute masses and radii for the stars good to better than 1.5%. We obtain masses of M1 = 1.269 +/- 0.017 M(Sun) and M2 = 0.7542 +/- 0.0059 M(Sun), radii of R1 = 1.477 +/- 0.012 R(Sun) and R2 = 0.7232 +/- 0.0091 R(Sun), and effective temperatures of 6770 +/- 150 K and 5020 +/- 150 K for the primary and secondary stars, respectively. Both components appear to have their rotations synchronized with the motion in the circular orbit. A comparison of the properties of the primary with current stellar evolution models gives good agreement for a metallicity of [Fe/H] = -0.17, which is consistent with photometric estimates, and an age of about 2.2 Gyr. On the other hand, the K2 secondary is larger than predicted for its mass by about 4%. Similar discrepancies are known to exist for other cool stars, and are generally ascribed to stellar activity. The system is in fact an X-ray source, and we argue that the main site of the activity is the secondary star. Indirect estimates give a strength of about 1 kG for the surface magnetic field on that star. A previously known close visual companion to V2154 Cyg is shown to be physically bound, making the system a hierarchical triple.
We report extensive spectroscopic and differential V-band photometric observations of the 18.4-day detached double-lined eclipsing binary LV Her (F9V), which has the highest eccentricity (e = 0.613) among the systems with well-measured properties. We determine the absolute masses and radii of the components to be M1 = 1.193 +/- 0.010 M(Sun), M2 = 1.1698 +/- 0.0081 M(Sun), R1 = 1.358 +/- 0.012 R(Sun), and R2 = 1.313 +/- 0.011 R(Sun), with fractional errors of 0.9% or better. The effective temperatures are 6060 +/- 150 K and 6030 +/- 150 K, respectively, and the overall metallicity is estimated to be [m/H] = +0.08 +/- 0.21. A comparison with current stellar evolution models for this composition indicates an excellent fit for an age between 3.8 and 4.2 Gyr, with both stars being near the middle of their main-sequence lifetimes. Full integration of the equations for tidal evolution is consistent with the high eccentricity, and suggests the stars spin axes are aligned with the orbital axis, and that their rotations should be pseudo-synchronized. The latter prediction is not quite in agreement with the measured projected rotational velocities.
We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02-day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3 % for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are M(A) = 1.6455 +/- 0.0043 M(Sun), R(A) = 1.888 +/- 0.029 R(Sun), and T(A) = 7510 +/- 100 K for the primary, and M(B) = 1.4588 +/- 0.0025 M(Sun), R(B) = 1.592 +/- 0.028 R(Sun), and T(B) = 7000 +/- 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 +/- 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar evolution models shows a good match to the measured properties at an age of about 1.1 Gyr.
We report extensive differential V-band photometry and high-resolution spectroscopic observations of the early F-type, 1.06-day detached eclipsing binary V506 Oph. The observations along with times of minimum light from the literature are used to der ive a very precise ephemeris and the physical properties for the components, with the absolute masses and radii being determined to 0.7% or better. The masses are 1.4153 +/- 0.0100 M(Sun) and 1.4023 +/- 0.0094 M(sun) for the primary and secondary, the radii are 1.725 +/- 0.010 R(Sun) and 1.692 +/- 0.012 R(Sun), and the effective temperatures 6840 +/- 150 K and 6780 +/- 110 K, respectively. The orbit is circular and the stars are rotating synchronously. The accuracy of the radii and temperatures is supported by the resulting distance estimate of 564 +/- 30 pc, in excellent agreement with the value implied by the trigonometric parallax listed in the Gaia/DR2 catalog. Current stellar evolution models from the MIST series for a composition of [Fe/H] = -0.04 match the properties of both stars in V506 Oph very well at an age of 1.83 Gyr, and indicate they are halfway through their core hydrogen-burning phase.
Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their l ow luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052 Msun and M2=0.6511+/-0.0052 Msun and radii of R1=0.687^{+0.017}_{-0.024} Rsun and R2=0.672^{+0.018}_{-0.022} Rsun. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2) d. The distance to the system is estimated to be d=135.2^{+7.6}_{-7.9} pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the Mbol-log Teff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا