ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional printing of silica-glass structures with submicrometric features

89   0   0.0 ( 0 )
 نشر من قبل Miku Laakso PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Miku Laakso




اسأل ChatGPT حول البحث

Humanitys interest in manufacturing silica-glass objects extends back over three thousand years. Silica glass is resistant to heating and exposure to many chemicals, and it is transparent in a wide wavelength range. Due to these qualities, silica glass is used for a variety of applications that shape our modern life, such as optical fibers in medicine and telecommunications. However, its chemical stability and brittleness impede the structuring of silica glass, especially on the small scale. Techniques for three-dimensional (3D) printing of silica glass, such as stereolithography and direct ink writing, have recently been demonstrated, but the achievable minimum feature size is several tens of micrometers. While submicrometric silica-glass structures have many interesting applications, for example in micro-optics, they are currently manufactured using lithography techniques, which severely limits the 3D shapes that can be realized. Here, we show 3D printing of optically transparent silica-glass structures with submicrometric features. We achieve this by cross-linking hydrogen silsesquioxane to silica glass using nonlinear absorption of laser light followed by the dissolution of the unexposed material. We print a functional microtoroid resonator with out-of-plane fiber couplers to demonstrate the new possibilities for designing and building silica-glass microdevices in 3D.

قيم البحث

اقرأ أيضاً

94 - Peng Wang , Wei Chu , Wenbo Li 2019
Three-dimensional (3D) printing has allowed for production of geometrically complex 3D objects with extreme flexibility, which is currently undergoing rapid expansions in terms of materials, functionalities, as well as areas of application. When atte mpting to print 3D microstructures in glass, femtosecond laser induced chemical etching (FLICE) has proved itself a powerful approach. Here, we demonstrate fabrication of macro-scale 3D glass objects of large heights up to ~3.8 cm with a well-balanced (i.e., lateral vs longitudinal) spatial resolution of ~20 {mu}m. The remarkable accomplishment is achieved by revealing an unexplored regime in the interaction of ultrafast laser pulses with fused silica which results in aberration-free focusing of the laser pulses deeply inside fused silica.
Graphite, with many industrial applications, is one of the widely sought-after allotropes of carbon. The sp2 hybridized and thermodynamically stable form of carbon forms a layered structure with strong in-plane carbon bonds and weak inter-layer van d er Waals bonding. Graphite is also a high-temperature ceramic, and shaping them into complex geometries is challenging, given its limited sintering behavior even at high temperatures. Although the geometric design of the graphite structure in many of the applications could dictate its precision performance, conventional synthesis methods for formulating complex geometric graphite shapes are limited due to the intrinsic brittleness and difficulties of high-temperature processing. Here, we report the development of colloidal graphite ink from commercial graphite powders with reproducible rheological behavior that allows the fabrication of any complex architectures with tunable geometry and directionality via 3D printing at room temperature. The method is enabled via using small amounts of clay, another layered material, as an additive, allowing the proper design of the graphene ink and subsequent binding of graphite platelets during printing. Sheared layers of clay are easily able to flow, adapt, and interface with graphite layers forming strong binding between the layers and between particles that make the larger structures. The direct ink printing of complex 3D architectures of graphite without further heat treatments could lead to easy shape engineering and related applications of graphite at various length scales, including complex graphite molds or crucibles. The 3D printed complex graphitic structures exhibit excellent thermal, electrical, and mechanical properties, and the clay additive does not seem to alter these properties due to the excellent inter-layer dispersion and mixing within the graphite material.
Irradiation damage is a key physics issue for semiconductor devices under extreme environments. For decades, the ionization-irradiation-induced damage in transistors with silica-silicon structures under constant dose rate is modeled by a uniform gene ration of $E$ centers in the bulk silica region and their irreversible conversion to $P_b$ centers at the silica-silicon interface. But, the traditional model fails to explain experimentally observed dependence of the defect concentrations on dose, especially at low dose rate. Here, we propose that, the generation of $E$ is decelerated due to the dispersive diffusion of induced holes in the disordered silica and the conversion of $P_b$ is reversible due to recombination-enhanced defect reactions under irradiation. It is shown that the derived analytic model based on these new understandings can consistently explain the fundamental but puzzling dependence of the defect concentrations on dose and dose rate in a wide range.
We report three-dimensional laser microfabrication, which enables microstructuring of materials on the scale of 0.2-1 micrometers. The two different types of microfabrication demonstrated and discussed in this work are based on holographic recording, and light-induced damage in transparent dielectric materials. Both techniques use nonlinear optical excitation of materials by ultrashort laser pulses (duration < 1 ps).
Laser cooling of a solid is achieved when a coherent laser illuminates the material in the red tail of its absorption spectrum, and the heat is carried out by anti-Stokes fluorescence of the blue-shifted photons. Solid-state laser cooling has been su ccessfully demonstrated in several materials, including rare-earth-doped crystals and glasses. Silica glass, being the most widely used optical material, has so far evaded all laser cooling attempts. In addition to its fundamental importance, many potential applications can be conceived for anti-Stokes fluorescence cooling of silica. These potential applications range from the substrate cooling of optical circuits for quantum information processing and cryogenic cooling of mirrors in high-sensitivity interferometers for gravitational wave detection to the heating reduction in high-power fiber lasers and amplifiers. Here we report the net cooling of high-purity Yb-doped silica glass samples that are primarily developed for high-power fiber laser applications, where special care has been taken in the fabrication process to reduce their impurities and lower their parasitic background loss. The non-radiative decay rate of the excited state in Yb ions is very small in these glasses due to the low level of impurities, resulting in near-unity quantum efficiency. We report the measurement of the cooling efficiency as a function of the laser wavelength, from which the quantum efficiency of the silica glass is calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا