ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially Resolved Molecular Gas Properties of Host Galaxy of Type I Superluminous Supernova SN 2017egm

110   0   0.0 ( 0 )
 نشر من قبل Bunyo Hatsukade
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of CO(1-0) observations of the host galaxy of a Type I superluminous supernova (SLSN-I), SN2017egm, one of the closest SLSNe-I at z = 0.03063, by using the Atacama Large Millimeter/submillimeter Array. The molecular gas mass of the host galaxy is $M_{rm gas} = (4.8 pm 0.3) times 10^9$ $M_{odot}$, placing it on the sequence of normal star-forming galaxies in an $M_{rm gas}$-star-formation rate (SFR) plane. The molecular hydrogen column density at the location of SN2017egm is higher than that of the Type II SN PTF10bgl, which is also located in the same host galaxy, and those of other Type II and Ia SNe located in different galaxies, suggesting that SLSNe-I have a preference for a dense molecular gas environment. On the other hand, the column density at the location of SN2017egm is comparable to those of Type Ibc SNe. The surface densities of molecular gas and the SFR at the location of SN2017egm are consistent with those of spatially resolved local star-forming galaxies and follow the Schmidt-Kennicutt relation. These facts suggest that SLSNe-I can occur in environments with the same star-formation mechanism as in normal star-forming galaxies.



قيم البحث

اقرأ أيضاً

Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively hi gh stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
204 - J.R. Maund , I. Steele , H. Jermak 2018
The origin of the luminosity of superluminous supernovae (SLSNe) is an unresolved mystery, and a number of very different physical scenarios (including energy injection from magnetars, collision with a dense circumstellar medium and pair instability- induced explosions) have been invoked. The application of polarimetry to normal SNe has been shown to probe the three-dimensional structure of exploding stars, providing clues to the nature of the explosion mechanism. We report imaging linear polarimetry observations of the Type I SLSN 2017egm, in the galaxy NGC 3191, conducted with the Liverpool Telescope and the RINGO3 instrument. Observations were acquired at four epochs, spanning 4 - 19 days after light-curve maximum, however, polarization was not detected at a level of $>3sigma$. At +7 and +15 days, and in the average over all epochs, we find a possible polarization signal, detected at a significance of $approx 2sigma$ in the blue channel. This signal is seen, primarily, in the Stokes $q$ parameter, with a corresponding polarization angle consistent with the orientation of the spiral arm in proximity to the position of SN 2017egm. We interpret this as indicating that any polarization, if present, originates from dust in the host galaxy rather than being intrinsic to the SN itself. Despite its apparent peculiarities, compared to other Type I SLSNe, the polarization characteristics of SN 2017egm are consistent with the previously reported low polarization of other SLSNe of this variety.
We present the results of CO(1-0) and CO(4-3) observations of the host galaxy of a long-duration gamma-ray burst GRB080207 at z = 2.0858 by using the Karl G. Jansky Very Large Array and the Atacama Large Millimeter/submillimeter Array. The host is de tected in CO(1-0) and CO(4-3), becoming the first case for a GRB host with more than two CO transitions detected combined with CO(2-1) and CO(3-2) in the literature. Adopting a metallicity-dependent CO-to-H2 conversion factor, we derive a molecular gas mass of Mgas = 8.7 x 10^10 Modot, which places the host in a sequence of normal star-forming galaxies in a Mgas-star-formation rate (SFR) plane. A modified blackbody fit to the far-infrared--millimeter photometry results in a dust temperature of 37 K and a dust mass of Mdust = 1.5 x 10^8 Modot. The spatially-resolving CO(4-3) observations allow us to examine the kinematics of the host. The CO velocity field shows a clear rotation and is reproduced by a rotation-dominated disk model with a rotation velocity of 350 km/s and a half-light radius of 2.4 kpc. The CO spectral line energy distribution derived from the four CO transitions is similar to that of starburst galaxies, suggesting a high excitation condition. Comparison of molecular gas properties between the host and normal (main-sequence) galaxies at similar redshifts shows that they share common properties such as gas mass fraction, gas depletion timescale, gas-to-dust ratio, location in the Mgas-SFR (or surface density) relation, and kinematics, suggesting that long-duration GRBs can occur in normal star-forming environments at z ~ 2.
Superluminous supernovae (SLSNe) are the most luminous supernovae in the universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendenc y to explode in very dense, UV-bright, and blue regions. In this paper we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF~11hrq and PTF~12dam. For both galaxies textit{Hubble Space Telescope} multi-filter images were obtained. Additionally, we performe integral field spectroscopy of the host galaxy of PTF~11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF~11hrq nor PTF~12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colors. The MUSE data reveal a bright starbursting region in the host of PTF~11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer color, stronger [OIII], and lower metallicity. The host galaxy is likely interacting with a companion. PTF~12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star-formation episodes triggered by interaction. High resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.
Kim et al. (2013) [K13] introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is $0.013pm 0.031$ mag for a supernova subsample with data coverage corresponding to the K13 training; at $ll 1sigma$, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is $0.045pm 0.026$ mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: Steps at $>2sigma $ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 $x(1)$ and $x(2)$ light-curve parameters. $x(1)$ affects the light-curve width and color around peak (similar to the $Delta m_{15}$ and stretch parameters), and $x(2)$ affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN~Ia diversity arising from progenitor stellar evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا