ترغب بنشر مسار تعليمي؟ اضغط هنا

RINGO3 polarimetry of the Type I superluminous SN 2017egm

205   0   0.0 ( 0 )
 نشر من قبل Justyn Maund
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of the luminosity of superluminous supernovae (SLSNe) is an unresolved mystery, and a number of very different physical scenarios (including energy injection from magnetars, collision with a dense circumstellar medium and pair instability-induced explosions) have been invoked. The application of polarimetry to normal SNe has been shown to probe the three-dimensional structure of exploding stars, providing clues to the nature of the explosion mechanism. We report imaging linear polarimetry observations of the Type I SLSN 2017egm, in the galaxy NGC 3191, conducted with the Liverpool Telescope and the RINGO3 instrument. Observations were acquired at four epochs, spanning 4 - 19 days after light-curve maximum, however, polarization was not detected at a level of $>3sigma$. At +7 and +15 days, and in the average over all epochs, we find a possible polarization signal, detected at a significance of $approx 2sigma$ in the blue channel. This signal is seen, primarily, in the Stokes $q$ parameter, with a corresponding polarization angle consistent with the orientation of the spiral arm in proximity to the position of SN 2017egm. We interpret this as indicating that any polarization, if present, originates from dust in the host galaxy rather than being intrinsic to the SN itself. Despite its apparent peculiarities, compared to other Type I SLSNe, the polarization characteristics of SN 2017egm are consistent with the previously reported low polarization of other SLSNe of this variety.



قيم البحث

اقرأ أيضاً

We present the results of CO(1-0) observations of the host galaxy of a Type I superluminous supernova (SLSN-I), SN2017egm, one of the closest SLSNe-I at z = 0.03063, by using the Atacama Large Millimeter/submillimeter Array. The molecular gas mass of the host galaxy is $M_{rm gas} = (4.8 pm 0.3) times 10^9$ $M_{odot}$, placing it on the sequence of normal star-forming galaxies in an $M_{rm gas}$-star-formation rate (SFR) plane. The molecular hydrogen column density at the location of SN2017egm is higher than that of the Type II SN PTF10bgl, which is also located in the same host galaxy, and those of other Type II and Ia SNe located in different galaxies, suggesting that SLSNe-I have a preference for a dense molecular gas environment. On the other hand, the column density at the location of SN2017egm is comparable to those of Type Ibc SNe. The surface densities of molecular gas and the SFR at the location of SN2017egm are consistent with those of spatially resolved local star-forming galaxies and follow the Schmidt-Kennicutt relation. These facts suggest that SLSNe-I can occur in environments with the same star-formation mechanism as in normal star-forming galaxies.
We present imaging polarimetry of the superluminous supernova SN 2015bn, obtained over nine epochs between $-$20 and $+$46 days with the Nordic Optical Telescope. This was a nearby, slowly-evolving Type I superluminous supernova that has been studied extensively and for which two epochs of spectropolarimetry are also available. Based on field stars, we determine the interstellar polarisation in the Galaxy to be negligible. The polarisation of SN 2015bn shows a statistically significant increase during the last epochs, confirming previous findings. Our well-sampled imaging polarimetry series allows us to determine that this increase (from $sim 0.54%$ to $gtrsim 1.10%$) coincides in time with rapid changes that took place in the optical spectrum. We conclude that the supernova underwent a `phase transition at around $+$20 days, when the photospheric emission shifted from an outer layer, dominated by natal C and O, to a more aspherical inner core, dominated by freshly nucleosynthesized material. This two-layered model might account for the characteristic appearance and properties of Type I superluminous supernovae.
Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively hi gh stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.
Manual fits to spectral times series of Type Ia supernovae have provided a method of reconstructing the explosion from a parametric model but due to lack of information about model uncertainties or parameter degeneracies direct comparison between the ory and observation is difficult. We present a probabilistic reconstruction of the normal Type Ia supernova SN2002bo. A single epoch spectrum, taken 10 days before maximum light, is fit by a 13-parameter model describing the elemental composition of the ejecta and the explosion physics (density, temperature, velocity, and explosion epoch). Model evaluation is performed through the application of a novel rapid spectral synthesis technique in which the radiative transfer code, TARDIS, is accelerated by a machine-learning framework. Analysis of the posterior distribution reveals a complex and degenerate parameter space and allows direct comparison to various hydrodynamic models. Our analysis favors detonation over deflagration scenarios and we find that our technique offers a novel way to compare simulation to observation.
We present the intensive spectroscopic follow up of the type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from January 22nd to September 1st 2014 with the Isaac Newton (INT) and William Hersc hel (WHT) Telescopes. After correcting the observations for the recession velocity of M82 and for Milky Way and host galaxy extinction, we measured expansion velocities from spectral line blueshifts and pseudo-equivalent width of the strongest features in the spectra, which gives an idea on how elements are distributed within the ejecta. We position SN 2014J in the Benetti (2005), Branch et al. (2006) and Wang et al. (2009) diagrams. These diagrams are based on properties of the Si II features and provide dynamical and chemical information about the SN ejecta. The nearby SN 2011fe, which showed little evidence for reddening in its host galaxy, is shown as a reference for comparisons. SN 2014J is a border-line object between the Core-normal (CN) and Broad-line (BL) groups, which corresponds to an intermediate position between Low Velocity Gradient (LVG) and High Velocity Gradient (HVG) objects. SN 2014J follows the R(Si II)-Delta m15 correlation, which confirms its classification as a relatively normal SN Ia. Our description of the SN Ia in terms of the evolution of the pseudo-equivalent width of various ions as well as the position in the various diagrams put this specific SN Ia into the overall sample of SN Ia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا