ﻻ يوجد ملخص باللغة العربية
Kim et al. (2013) [K13] introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is $0.013pm 0.031$ mag for a supernova subsample with data coverage corresponding to the K13 training; at $ll 1sigma$, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is $0.045pm 0.026$ mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: Steps at $>2sigma $ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 $x(1)$ and $x(2)$ light-curve parameters. $x(1)$ affects the light-curve width and color around peak (similar to the $Delta m_{15}$ and stretch parameters), and $x(2)$ affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN~Ia diversity arising from progenitor stellar evolution.
We examine the relationship between Type Ia Supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar masses and specific star-f
From Sloan Digital Sky Survey ugriz imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by sea
A string of recent studies has debated the exact form and physical origin of an evolutionary trend between the peak luminosity of Type Ia supernovae (SNe Ia) and the properties of the galaxies that host them. We shed new light on the discussion by pr
For low-redshift (z < 0.1) Type Ia supernovae (SN Ia) samples used in several cosmological analyses over the past decade, we probe for systematic bias by looking for correlations between surface brightness (SB) measurements and Hubble residuals (HR).
Using data from the Sloan Digital Sky Supernova Survey-II, we measure the rate of Type Ia Supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05<z<0.25 is constructed. Using broad-band photom