ﻻ يوجد ملخص باللغة العربية
We report on NICER observations of the Magnetar SGR~1935+2154, covering its 2020 burst storm and long-term persistent emission evolution up to $sim90$ days post outburst. During the first 1120~seconds taken on April 28 00:40:58 UTC we detect over 217 bursts, corresponding to a burst rate of $>0.2$ bursts s$^{-1}$. Three hours later the rate is at 0.008 bursts s$^{-1}$, remaining at a comparatively low level thereafter. The $T_{90}$ burst duration distribution peaks at 840~ms; the distribution of waiting times to the next burst is fit with a log-normal with an average of 2.1 s. The 1-10 keV burst spectra are well fit by a blackbody, with an average temperature and area of $kT=1.7$ keV and $R^2=53$ km$^2$. The differential burst fluence distribution over $sim3$ orders of magnitude is well modeled with a power-law form $dN/dFpropto F^{-1.5pm0.1}$. The source persistent emission pulse profile is double-peaked hours after the burst storm. We find that the bursts peak arrival times follow a uniform distribution in pulse phase, though the fast radio burst associated with the source aligns in phase with the brighter peak. We measure the source spin-down from heavy-cadence observations covering days 21 to 39 post-outburst, $dot u=-3.72(3)times10^{-12}$ Hz s$^{-1}$; a factor 2.7 larger than the value measured after the 2014 outburst. Finally, the persistent emission flux and blackbody temperature decrease rapidly in the early stages of the outburst, reaching quiescence 40 days later, while the size of the emitting area remains unchanged.
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 ke
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen
Fast radio bursts (FRBs) are millisecond-duration, bright radio signals (fluence $mathrm{0.1 - 100,Jy,ms}$) emitted from extragalactic sources of unknown physical origin. The recent CHIME/FRB and STARE2 detection of an extremely bright (fluence $sim$
During April and May 2020, SGR J1935+2154 emitted hundreds of short bursts and became one of the most prolific transient magnetars. At the onset of the active bursting period, a 130-s burst ``forest, which included some bursts with peculiar time prof
Using numerical simulations we show that low-amplitude Alfven waves from a magnetar quake propagate to the outer magnetosphere and convert to plasmoids (closed magnetic loops) which accelerate from the star, driving blast waves into the magnetar wind