ترغب بنشر مسار تعليمي؟ اضغط هنا

Shedding Light on Moire Excitons: A First-Principles Perspective

65   0   0.0 ( 0 )
 نشر من قبل Hongli Guo Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Moire superlattices in van der Waals (vdW) heterostructures could trap strongly bonded and long lived interlayer excitons. Assumed to be localized, these moire excitons could form ordered quantum dot arrays, paving the way for novel optoelectronic and quantum information applications. Here we perform first principles simulations to shed light on moire excitons in twisted MoS2/WS2 heterostructures. We provide the direct evidence of localized interlayer moire excitons in vdW heterostructures. The moire potentials are mapped out based on spatial modulations of energy gaps. Nearly flat valence bands are observed in the heterostructures without magic angles. The dependence of spatial localization and binding energy of the moire excitons on the twist angle of the heterostructures is examined. We explore how electric field can be tuned to control the position, polarity, emission energy, and hybridization strength of the moire excitons. We predict that alternating electric fields could modulate the dipole moments of hybridized moire excitons and suppress their diffusion in Moire lattices.

قيم البحث

اقرأ أيضاً

Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.
The fluctuations of the magnetic order parameter, or longitudinal spin excitations, are investigated theoretically in the ferromagnetic Fe and Ni as well as in the antiferromagnetic phase of the pnictide superconductor FeSe. The charge and spin dynam ics of these systems is described by evaluating the generalized charge and spin density response function calculated from first-principles linear response time dependent density functional theory within adiabatic local spin density approximation. We observe that the formally non-interacting Kohn-Sham system features strong coupling between the magnetization and charge dynamics in the longitudinal channel and that the coupling is effectively removed upon the inclusion of the Coulomb interaction in the charge channel and the resulting appearance of plasmons. The longitudinal spin fluctuations acquire a collective character without the emergence of the Goldstone boson, similar to the case of paramagnon excitations in non-magnetic metals like Pd. In ferromagnetic Fe and Ni the longitudinal spin dynamics is governed by interactions between low-energy intraband electron-hole pairs while in quasi two dimensional antiferromagnet FeSe it is dominated by the interband transitions with energies of the order of exchange splitting. In the later material, the collective longitudinal magnetization fluctuations feature well defined energies and long life times for small momenta and appear below the particle-hole continuum. The modes become strongly Landau-damped for growing wave-vectors. We relate our theoretical findings to existing experimental spin-polarized electron energy loss spectroscopy results. In bulk bcc Fe, the longitudinal magnetic modes appear above the typical energies of transverse spin-waves, have energies comparable with the Stoner spin-flip excitation continuum, and are order of magnitude less energetic than the charge dynamics.
A single confined spin interacting with a solid-state environment has emerged as one of the fundamental paradigms of mesoscopic physics. In contrast to standard quantum optical systems, decoherence that stems from these interactions can in general no t be treated using the Born-Markov approximation at low temperatures. Here we study the non-equilibrium dynamics of a single-spin in a semiconductor quantum dot adjacent to a fermionic reservoir and show how the dynamics can be revealed in detail in an optical absorption experiment. We show that the highly asymmetrical optical absorption lineshape of the resulting Kondo exciton consists of three distinct frequency domains, corresponding to short, intermediate and long times after the initial excitation, which are in turn described by the three fixed points of the single-impurity Anderson Hamiltonian. The zero-temperature power-law singularity dominating the lineshape is linked to dynamically generated Kondo correlations in the photo-excited state. We show that this power-law singularity is tunable with gate voltage and magnetic field, and universal.
Two-dimensional excitons formed in quantum materials such as monolayer transition-metal dichalcogenides and their strong light-matter interaction have attracted unrivalled attention by the research community due to their extraordinarily large oscilla tor strength as well as binding energy, and the inherent spin-valley locking. Semiconducting few-layer and monolayer materials with their sharp optical resonances such as WSe2 have been extensively studied and envisioned for applications in the weak as well as strong light-matter coupling regimes, for effective nano-laser operation with various different structures, and particularly for valleytronic nanophotonics motivated by the circular dichroism. Many of these applications, which may benefit heavily from the two-dimensional electronic quasiparticles properties in such films, require controlling, manipulating and first of all understanding the nature of the optical resonances that are attributed to exciton modes. While theory and previous experiments have provided unique methods to the characterization and classification efforts regarding the band structure and optical modes in 2D materials, here, we directly measure the quasiparticle energy-momentum dispersion for the first time. Our results for single-layer WSe2 clearly indicate an emission regime predominantly governed by free excitons, i.e. Coulomb-bound electron-hole pairs with centre-of-mass momentum and corresponding effective mass. Besides uniquely evidencing the existence of free excitons at cryogenic temperatures optically, the fading of the dispersive character for increased temperatures or excitation densities reveals a transition to a regime with profound role of charge-carrier plasma or localized excitons regarding its emission, debunking the myth of free-exciton emission at elevated temperatures.
87 - Yusong Bai , Lin Zhou , Jue Wang 2019
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra nsition-metal dichalcogenide (TMDC) heterobilayers, signatures of quantum confinement by the moire landscape have been reported in recent experimental studies. Such moire confinement has offered the exciting possibility to tailor new excitonic systems, such as ordered arrays of zero-dimensional (0D) quantum emitters and their coupling into topological superlattices. A remarkable nature of the moire potential is its dramatic response to strain, where a small uniaxial strain can tune the array of quantum-dot-like 0D traps into parallel stripes of one-dimensional (1D) quantum wires. Here, we present direct evidence for the 1D moire potentials from real space imaging and the corresponding 1D moire excitons from photoluminescence (PL) emission in MoSe2/WSe2 heterobilayers. Whereas the 0D moire excitons display quantum emitter-like sharp PL peaks with circular polarization, the PL emission from 1D moire excitons has linear polarization and two orders of magnitude higher intensity. The results presented here establish strain engineering as a powerful new method to tailor moire potentials as well as their optical and electronic responses on demand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا