ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study of phononic thermal transport in monolayer C3N: a comparison with graphene

98   0   0.0 ( 0 )
 نشر من قبل Haifeng Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.



قيم البحث

اقرأ أيضاً

The electronic and thermal transport properties have been systematically investigated in monolayer C$_4$N$_3$H with first-principles calculations. The intrinsic thermal conductivity of monolayer C$_4$N$_3$H was calculated coupling with phonons Boltzm ann transport equation. For monolayer C$_4$N$_3$H, the thermal conductivity (k{appa}) (175.74 and 157.90 W m-1K-1 with a and b-plane, respectively) is significantly lower than that of graphene (3500 Wm$^{-1}$K$^{-1}$) and C3N(380 Wm$^{-1}$K$^{-1}$). Moreover, it is more than the second time higher than C$_2$N (82.88 Wm$^{-1}$K$^{-1}$) at 300 K. Furthermore, the group velocities, relax time, anharmonicity, as well as the contribution from different phonon branches, were thoroughly discussed in detail. A comparison of the thermal transport characters among 2D structure for monolayer C$_4$N$_3$H, graphene, C$_2$N and C$_3$N has been discussed. This work highlights the essence of phonon transport in new monolayer material.
In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles bas ed simulations to explore the electronic, mechanical properties and thermal conductivity of graphene-like BeO, MgO and CaO monolayers. The considered nanosheets are found to show desirable thermal and dynamical stability. BeO monolayer is found to show remarkably high elastic modulus and tensile strength of 408 and 53.3 GPa, respectively. The electronic band gap of BeO, MgO and CaO monolayers are predicted to be 6.72, 4.79, and 3.80 eV, respectively, using the HSE06 functional. On the basis of iterative solutions of the Boltzmann transport equation, the room temperature lattice thermal conductivity of BeO, MgO and CaO monolayers are predicted to be 385, 64 and 15 W/mK, respectively. Our results reveal substantial decline in the electronic band gap, mechanical strength and thermal conductivity by increasing the weight of metal atoms. This work highlights outstandingly high thermal conductivity, carrier mobility and mechanical strength of insulating BeO nanosheets and suggest them as promising candidates to design strong and insulating components with high thermal conductivities.
SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic and magnetic properties of X (X = Ga, In, As, Sb) atoms doped SnSe monolayer. The calculated electronic structures show that Ga-doped system maintains semiconducting property while In-doped SnSe monolayer is half-metal. The As- and Sb- doped SnSe systems present the characteristics of n-type semiconductor. Moreover, all considered substitutional doping cases induce magnetic ground states with the magnetic moment of 1{mu}B. In addition, the calculated formation energies also show that four types of doped systems are thermodynamic stable. These results provide a new route for the potential applications of doped SnSe monolayer in 2D photoelectronic and magnetic semiconductor devices.
A type of line defect (LD) composed of alternate squares and octagons (4-8) as the basic unit is currently an experimentally available topological defect in graphene lattice, which brings some interesting modification to magnetic and electronic prope rties of graphene. The transitional metal (TM) adsorb on graphene with line-defect (4-8), and they show interesting and attractive structural, magnetic and electronic properties. For different TMs such as Fe, Co, Mn, Ni and V, the complex systems show different magnetic and electronic properties. The TM atoms can spontaneously adsorb at quadrangular sites, forming an atomic chain along LD on graphene. The most stable configuration is hollow site of regular tangle. The TMs (TM = Co, Fe, Mn, Ni, V) tend to form extended metal lines, showing ferromagnetic (FM) ground state. For Co, Fe, and V atom, the system are half-metal. The spin-{alpha} electron is insulating, while spin-b{eta} electron is conductive. For Mn and Ni atom, Mn-LD and Ni-LD present spin-polarized metal; For Fe atom, the Fe-LD shows semimetal with Dirac cones. For Fe and V atom, both Fe-LD and V-LD show spin-polarized half-metallic properties. And its spin-{alpha} electron is conducting, while spin-b{eta} electron is insulating. Different TMs adsorbing on graphene nanoribbon forming same stable configurations of metal lines, show different electronic properties. The adsorption of TMs introduces magnetism and spin-polarization. These metal lines have potential application in spintronic devices, and work as quasi-one-dimensional metallic wire, which may form building blocks for atomic-scale electrons with well-controlled contacts at atomic level.
We reveal that phononic thermal transport in graphene is not immune to grain boundaries (GBs) aligned along the direction of the temperature gradient. Non-equilibrium molecular dynamics simulations uncover a large reduction in the phononic thermal co nductivity ($kappa_p$) along linear ultra-narrow GBs comprising periodically-repeating pentagon-heptagon dislocations. Greens function calculations and spectral energy density analysis indicate that $kappa_p$ is the complex manifestation of the periodic strain field, which behaves as a reflective diffraction grating with both diffuse and specular phonon reflections, and represents a source of anharmonic phonon-phonon scattering. Our findings provide new insights into the integrity of the phononic thermal transport in GB graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا