ﻻ يوجد ملخص باللغة العربية
Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.
The electronic and thermal transport properties have been systematically investigated in monolayer C$_4$N$_3$H with first-principles calculations. The intrinsic thermal conductivity of monolayer C$_4$N$_3$H was calculated coupling with phonons Boltzm
In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles bas
SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic
A type of line defect (LD) composed of alternate squares and octagons (4-8) as the basic unit is currently an experimentally available topological defect in graphene lattice, which brings some interesting modification to magnetic and electronic prope
We reveal that phononic thermal transport in graphene is not immune to grain boundaries (GBs) aligned along the direction of the temperature gradient. Non-equilibrium molecular dynamics simulations uncover a large reduction in the phononic thermal co