ترغب بنشر مسار تعليمي؟ اضغط هنا

Shedding light on non-equilibrium dynamics of a spin coupled to fermionic reservoir

339   0   0.0 ( 0 )
 نشر من قبل Hakan E. Tureci
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single confined spin interacting with a solid-state environment has emerged as one of the fundamental paradigms of mesoscopic physics. In contrast to standard quantum optical systems, decoherence that stems from these interactions can in general not be treated using the Born-Markov approximation at low temperatures. Here we study the non-equilibrium dynamics of a single-spin in a semiconductor quantum dot adjacent to a fermionic reservoir and show how the dynamics can be revealed in detail in an optical absorption experiment. We show that the highly asymmetrical optical absorption lineshape of the resulting Kondo exciton consists of three distinct frequency domains, corresponding to short, intermediate and long times after the initial excitation, which are in turn described by the three fixed points of the single-impurity Anderson Hamiltonian. The zero-temperature power-law singularity dominating the lineshape is linked to dynamically generated Kondo correlations in the photo-excited state. We show that this power-law singularity is tunable with gate voltage and magnetic field, and universal.



قيم البحث

اقرأ أيضاً

Using a Luttinger liquid theory we investigate the time evolution of the particle density of a one-dimensional fermionic system with open boundaries and subject to a finite duration quench of the inter-particle interaction. We provide analytical and asymptotic solutions to the unitary time evolution of the system, showing that both switching on and switching off the quench ramp create light-cone perturbations in the density. The post-quench dynamics is strongly affected by the interference between these two perturbations. In particular, we find that the discrepancy between the time-dependent density and the one obtained by a generalized Gibbs ensemble picture vanishes with an oscillatory behavior as a function of the quench duration, with local minima corresponding to a perfect overlap of the two light-cone perturbations. For adiabatic quenches, we also obtain a similar behavior in the approach of the generalized Gibbs ensemble density towards the one associated with the ground state of the final Hamiltonian.
Direct coupling between gapless bosons and a Fermi surface results in the destruction of Landau quasiparticles and a breakdown of Fermi liquid theory. Such a non-Fermi liquid phase arises in spin-orbit coupled ferromagnets with spontaneously broken c ontinuous symmetries due to strong coupling between rotational Goldstone modes and itinerant electrons. These systems provide an experimentally accessible context for studying non-Fermi liquid physics. Possible examples include low-density Rashba coupled electron gases, which have a natural tendency towards spontaneous ferromagnetism, or topological insulator surface states with proximity-induced ferromagnetism. Crucially, unlike the related case of a spontaneous nematic distortion of the Fermi surface, for which the non-Fermi liquid regime is expected to be masked by a superconducting dome, we show that the non-Fermi liquid phase in spin-orbit coupled ferromagnets is stable.
64 - Hongli Guo , Xu Zhang , Gang Lu 2020
Moire superlattices in van der Waals (vdW) heterostructures could trap strongly bonded and long lived interlayer excitons. Assumed to be localized, these moire excitons could form ordered quantum dot arrays, paving the way for novel optoelectronic an d quantum information applications. Here we perform first principles simulations to shed light on moire excitons in twisted MoS2/WS2 heterostructures. We provide the direct evidence of localized interlayer moire excitons in vdW heterostructures. The moire potentials are mapped out based on spatial modulations of energy gaps. Nearly flat valence bands are observed in the heterostructures without magic angles. The dependence of spatial localization and binding energy of the moire excitons on the twist angle of the heterostructures is examined. We explore how electric field can be tuned to control the position, polarity, emission energy, and hybridization strength of the moire excitons. We predict that alternating electric fields could modulate the dipole moments of hybridized moire excitons and suppress their diffusion in Moire lattices.
The discovery of novel phases of matter is at the core of modern physics. In quantum materials, subtle variations in atomic-scale interactions can induce dramatic changes in macroscopic properties and drive phase transitions. Despite their importance , the mesoscale processes underpinning phase transitions often remain elusive because of the vast differences in timescales between atomic and electronic changes and thermodynamic transformations. Here, we photoinduce and directly observe with x-ray scattering an ultrafast enhancement of the structural long-range order in the archetypal Mott system V2O3. Despite the ultrafast change in crystal symmetry, the change of unit cell volume occurs an order of magnitude slower and coincides with the insulator-to-metal transition. The decoupling between the two structural responses in the time domain highlights the existence of a transient photoinduced precursor phase, which is distinct from the two structural phases present in equilibrium. X-ray nanoscopy reveals that acoustic phonons trapped in nanoscale blocks govern the dynamics of the ultrafast transition into the precursor phase, while nucleation and growth of metallic domains dictate the duration of the slower transition into the metallic phase. The enhancement of the long-range order before completion of the electronic transition demonstrates the critical role the non-equilibrium structural phases play during electronic phase transitions in correlated electrons systems.
We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses. When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are found between the spin ens emble and the cavity mode which we describe very accurately, including the dephasing effect of the inhomogeneous spin broadening. We demonstrate that a precise knowledge of this broadening is crucial both for a qualitative and a quantitative understanding of the temporal spin-cavity dynamics. On this basis we show that coherent oscillations between the spin ensemble and the cavity can be enhanced by a few orders of magnitude, when driving the system with pulses that match special resonance conditions. Our theoretical approach is tested successfully with an experiment based on an ensemble of negatively charged nitrogen-vacancy (NV) centers in diamond strongly coupled to a superconducting coplanar single-mode waveguide resonator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا