ﻻ يوجد ملخص باللغة العربية
Antiferromagnets host exotic quasiparticles, support high frequency excitations and are key enablers of the prospective spintronic and spin-orbitronic technologies. Here, we propose a concept of a curvilinear antiferromagnetism where material responses can be tailored by a geometrical curvature without the need to adjust material parameters. We show that an intrinsically achiral one-dimensional (1D) curvilinear antiferromagnet behaves as a chiral helimagnet with geometrically tunable Dzyaloshinskii--Moriya interaction (DMI) and orientation of the N{e}el vector. The curvature-induced DMI results in the hybridization of spin wave modes and enables a geometrically-driven local minimum of the low frequency branch. This positions curvilinear 1D antiferromagnets as a novel platform for the realization of geometrically tunable chiral antiferromagnets for antiferromagnetic spin-orbitronics and fundamental discoveries in the formation of coherent magnon condensates in the momentum space.
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the
By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin dynamics as a function of the applied magnetic field in two gapped one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)2 and the spin-ladd
For a number of quantum critical points in one dimension quantum field theory has provided exact results for the scaling of spatial and temporal correlation functions. Experimental realizations of these models can be found in certain quasi one dimens
Of great recent interest in condensed matter physics are phenomena of coexistence of quantum and classical properties in the same material. Such duality occurs in certain mixed-spin antiferromagnets composed of quantum spin chains interacting through
We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time-reversal followed by space-inversion ($PT$-symmetry). We prove that Dirac points and nodal l