ﻻ يوجد ملخص باللغة العربية
We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time-reversal followed by space-inversion ($PT$-symmetry). We prove that Dirac points and nodal lines, the former being the limiting case of the latter, are the generic forms of symmetry-protected band crossings between magnon branches. As a concrete example, we study a Heisenberg spin model for a spin-web compound, Cu$_3$TeO$_6$, and show the presence of the magnon Dirac points assuming a collinear magnetic structure. Upon turning on symmetry-allowed Dzyaloshinsky-Moriya interactions, which introduce a small non-collinearity in the ground state configuration, we find that the Dirac points expand into nodal lines with nontrivial $Z_2$-topological charge, a new type of nodal lines unpredicted in any materials so far.
We study the nontrivial linear magnon band crossings in the collinear antiferromagnets on the two-dimensional (2D) CaVO lattice, also realized in some iron-based superconductors such as AFe$_{1.6+x}$Se$_2$ (A = K, Rb, Cs). It is shown that the combin
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, fl
We study the topological properties of magnon excitations in a wide class of three dimensional (3D) honeycomb lattices with ferromagnetic ground states. It is found that they host nodal ring magnon excitations. These rings locate on the same plane in
Previously known three-dimensional Dirac semimetals (DSs) occur in two types -- topological DSs and nonsymmorphic DSs. Here we present a novel three-dimensional DS that exhibits both features of the topological and nonsymmorphic DSs. We introduce a m
We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering, showing that Gd is a Dirac magnon material with nodal lines at $K$ and nodal planes at half integer $ell$. We find an anisotropic intensity windi