ترغب بنشر مسار تعليمي؟ اضغط هنا

b{eta}-phase (AlxGa1-x)2O3 thin film with Al composition more than 70%

63   0   0.0 ( 0 )
 نشر من قبل Xiaohang Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we have demonstrated wide-composition-range b{eta}-(AlxGa1-x)2O3 thin films with record-high Al compositions up to 77% for b{eta}-(AlxGa1-x)2O3 covering bandgaps from 4.9 to 6.4 eV. With optimized thermal annealing conditions, the b{eta}-Ga2O3 binary thin films on sapphire substrates transformed to the b{eta}-(AlGa)2O3 ternary thin films with different compositions. The binary to ternary transformation resulted from the Al atom diffusion from sapphire into the oxide layers; meanwhile, the Ga atoms diffused into sapphire leading to thicker thin films than the original thicknesses. The interdiffusion processes were confirmed by transmission electron microscopy, which enhanced in proportion to the annealing temperature. The strain states of the b{eta}-(AlGa)2O3 films have been analyzed showing reduced in-plane compressive strain with higher annealing temperature; and the film eventually became strain-free when the temperature was 1400 oC corresponding to the Al composition of 77%. The proposed method is promising for the preparation of the b{eta}-(AlGa)2O3 thin films without employing sophisticated direct-growth techniques for alloys.

قيم البحث

اقرأ أيضاً

We report on the growth and characterization of metalorganic vapor-phase epitaxy-grown b{eta}-(AlxGa1-x)2O3/b{eta}-Ga2O3 modulation-doped heterostructures. Electron channel is realized in the heterostructure by utilizing a delta-doped b{eta}-(AlxGa1- x)2O3 barrier. Electron channel characteristics are studied using transfer length method, capacitance-voltage and Hall measurements. Hall sheet charge density of 1.06 x 1013 cm-2 and mobility of 111 cm2/Vs is measured at room temperature. Fabricated transistor showed peak current of 22 mA/mm and on-off ratio of 8 x 106. Sheet resistance of 5.3 k{Omega}/Square is measured at room temperature, which includes contribution from a parallel channel in b{eta}-(AlxGa1-x)2O3.
The performance of solution-processed solar cells strongly depends on the geometrical structure and roughness of the photovoltaic layers formed during film drying. During the drying process, the interplay of crystallization and liquid-liquid demixing leads to the structure formation on the nano- and microscale and to the final rough film. In order to better understand how the film structure can be improved by process engineering, we aim at theoretically investigating these systems by means of phase-field simulations. We introduce an evaporation model based on the Cahn-Hilliard equation for the evolution of the fluid concentrations coupled to the Allen-Cahn equation for the liquid-vapour phase transformation. We demonstrate its ability to match the experimentally measured drying kinetics and study the impact of the parameters of our model. Furthermore, the evaporation of solvent blends and solvent-vapour annealing are investigated. The dry film roughness emerges naturally from our set of equations, as illustrated through preliminary simulations of spinodal decomposition and film drying on structured substrates.
128 - Qizhang Li , Haiyu He (1 2021
We propose a mechanism to substantially rectify radiative heat flow by matching thin films of metal-to-insulator transition materials and polar dielectrics in the electromagnetic near field. By leveraging the distinct scaling behaviors of the local d ensity of states with film thickness for metals and insulators, we theoretically achieve rectification ratios over 140-a 10-fold improvement over the state of the art-with nanofilms of vanadium dioxide and cubic boron nitride in the parallel-plane geometry at experimentally feasible gap sizes (~100 nm). Our rational design offers relative ease of fabrication, flexible choice of materials, and robustness against deviations from optimal film thicknesses. We expect this work to facilitate the application of thermal diodes in solid-state thermal circuits and energy conversion devices.
Power-conversion efficiency is a critical factor for the wider adoption of solar-cell modules. Thin-film solar cells are cheap and easy to manufacture, but their efficiencies are low compared to crystalline-silicon solar cells and need to be improved . A thin-film solar cell with two absorber layers (instead of only one), with bandgap energy graded in both, can capture solar photons in a wider spectral range. With a 300-nm-thick CIGS~absorber layer and an 870-nm-thick CZTSSe~absorber layer, an efficiency of $34.45%$ is predicted by a detailed optoelectronic model, provided that the grading of bandgap energy is optimal in both absorber layers.
We report on low-temperature MOVPE growth of silicon delta-doped b{eta}-Ga2O3 films with low FWHM. The as-grown films are characterized using Secondary-ion mass spectroscopy, Capacitance-Voltage and Hall techniques. SIMS measurements show that surfac e segregation is the chief cause of large FWHM in MOVPE-grown films. The surface segregation coefficient (R) is observed to reduce with reduction in the growth temperature. Films grown at 600 {deg}C show an electron concentration of 9.7 x 1012 cm-2 and a FWHM of 3.2 nm. High resolution scanning/transmission electron microscopy of the epitaxial film did not reveal any significant observable degradation in crystal quality of the delta sheet and surrounding regions. Hall measurements of delta-doped film on Fe-doped substrate showed a sheet charge density of 6.1 x 1012 cm-2 and carrier mobility of 83 cm2/V. s. Realization of sharp delta doping profiles in MOVPE-grown b{eta}-Ga2O3 is promising for high performance device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا