ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for probing ultralight primordial black holes using the stochastic gravitational-wave background induced by primordial curvature perturbations

96   0   0.0 ( 0 )
 نشر من قبل Shasvath Kapadia
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultralight primordial black holes (PBHs) with masses $lesssim 10^{15}$g and subatomic Schwarzschild radii, produced in the early Universe, are expected to have evaporated by the current cosmic age due to Hawking radiation. Based on this assumption, a number of constraints on the abundance of ultralight PBHs have been made. However, Hawking radiation has thus far not been verified experimentally. It would, therefore, be of interest if constraints on ultralight PBHs could be placed independent of the assumption of Hawking-radiation. In this paper, we explore the possibility of probing these PBHs, within a narrow mass range, using gravitational-wave (GW) data from the two LIGO detectors. The idea is that large primordial curvature perturbations that result in the formation of PBHs, would also generate GWs through non-linear mode couplings. These induced GWs would produce a stochastic background. Specifically, we focus our attention on PBHs of mass range $sim 10^{13} - 10^{15}$g for which the induced stochastic GW background peak falls in the sensitivity band of LIGO. We find that, for both narrow and broad Gaussian PBH mass distributions, the corresponding GW background would be detectable using presently available LIGO data, provided we neglect the existing constraints on the abundance of PBHs, which are based on Hawking radiation. Furthermore, we find that these stochastic backgrounds would be detectable in LIGOs third observing run, even after considering the existing constraints on PBH abundance. A non-detection should enable us to constrain the amplitude of primordial curvature perturbations as well as the abundance of ultralight PBHs. We estimate that by the end of the third observing run, assuming non-detection, we should be able to place constraints that are orders of magnitude better than currently existing ones.



قيم البحث

اقرأ أيضاً

Primordial Black Holes (PBH) from peaks in the curvature power spectrum could constitute today an important fraction of the Dark Matter in the Universe. At horizon reentry, during the radiation era, order one fluctuations collapse gravitationally to form black holes and, at the same time, generate a stochastic background of gravitational waves coming from second order anisotropic stresses in matter. We study the amplitude and shape of this background for several phenomenological models of the curvature power spectrum that can be embedded in waterfall hybrid inflation, axion, domain wall, and boosts of PBH formation at the QCD transition. For a broad peak or a nearly scale invariant spectrum, this stochastic background is generically enhanced by about one order of magnitude, compared to a sharp feature. As a result, stellar-mass PBH from Gaussian fluctuations with a wide mass distribution are already in strong tension with the limits from Pulsar Timing Arrays, if they constitute a non negligible fraction of the Dark Matter. But this result is mitigated by the uncertainties on the curvature threshold leading to PBH formation. LISA will have the sensitivity to detect or rule out light PBH down to $10^{-14} M_{odot}$. Upcoming runs of LIGO/Virgo and future interferometers such as the Einstein Telescope will increase the frequency lever arm to constrain PBH from the QCD transition. Ultimately, the future SKA Pulsar Timing Arrays could probe the existence of even a single stellar-mass PBH in our Observable Universe.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia nity of such stochastic gravitational waves background which receive two contributions, the first at formation time and the second due to propagation effects. The former contribution can be generated if the distribution of the curvature perturbation is characterized by a local and scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a sizeable magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest that primordial black holes may not comply the totality of the dark matter.
Assuming that primordial black holes compose a fraction of dark matter, some of them may accumulate at the center of galaxy and perform a prograde or retrograde orbit against the gravity pointing towards the center exerted by the central massive blac k hole. If the mass of primordial black holes is of the order of stellar mass or smaller, such extreme mass ratio inspirals can emit gravitational waves and form a background due to incoherent superposition of all the contributions of the Universe. We investigate the stochastic gravitational-wave background energy density spectra from the directional source, the primordial black holes surrounding Sagittarius A$^ast$ of the Milky Way, and the isotropic extragalactic total contribution, respectively. As will be shown, the resultant stochastic gravitational-wave background energy density shows different spectrum features such as the peak positions in the frequency domain for the above two kinds of sources. Detection of stochastic gravitational-wave background with such a feature may provide evidence for the existence of primordial black holes. Conversely, a null searching result can put constraints on the abundance of primordial black holes in dark matter.
Primordial black holes (PBHs) are dark matter candidates that span broad mass ranges from $10^{-17}$ $M_odot$ to $sim 100$ $M_odot$. We show that the stochastic gravitational wave background can be a powerful window for the detection of sub-solar mas s PBHs and shed light on their formation channel via third-generation gravitational wave detectors such as Cosmic Explorer and the Einstein Telescope. By using the mass distribution of the compact objects and the redshift evolution of the merger rates, we can distinguish astrophysical sources from PBHs and will be able to constrain the fraction of sub-solar mass PBHs $leq 1$ $M_odot$ in the form of dark matter $f_{PBH}leq 1%$ at $68%$ C.L. even for a pessimistic value of the suppression factor ($f_{sup} sim 10^{-3}$). For $f_{sup} sim 1$, the constraints on $f_{PBH}$ will be less than $0.001%$. Furthermore, we will be able to measure the redshift evolution of the PBH merger rate with about $1%$ accuracy, making it possible to uniquely distinguish between the Poisson and clustered PBH scenarios.
Primordial black holes (PBHs) can form as a result of primordial scalar perturbations at small scales. This PBH formation scenario has associated gravitational wave (GW) signatures from second-order GWs induced by the primordial curvature perturbatio n, and from GWs produced during an early PBH dominated era. We investigate the ability of next generation GW experiments, including BBO, LISA, and CE, to probe this PBH formation scenario in a wide mass range (10 - 1e27 g). Measuring the stochastic GW background with GW observatories can constrain the allowed parameter space of PBHs including a previously unconstrained region where light PBHs (< 1e9 g) temporarily dominate the energy density of the universe before evaporating. We also show how PBH formation impacts the reach of GW observatories to the primordial power spectrum and provide constraints implied by existing PBH bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا