ﻻ يوجد ملخص باللغة العربية
Primordial black holes (PBHs) are dark matter candidates that span broad mass ranges from $10^{-17}$ $M_odot$ to $sim 100$ $M_odot$. We show that the stochastic gravitational wave background can be a powerful window for the detection of sub-solar mass PBHs and shed light on their formation channel via third-generation gravitational wave detectors such as Cosmic Explorer and the Einstein Telescope. By using the mass distribution of the compact objects and the redshift evolution of the merger rates, we can distinguish astrophysical sources from PBHs and will be able to constrain the fraction of sub-solar mass PBHs $leq 1$ $M_odot$ in the form of dark matter $f_{PBH}leq 1%$ at $68%$ C.L. even for a pessimistic value of the suppression factor ($f_{sup} sim 10^{-3}$). For $f_{sup} sim 1$, the constraints on $f_{PBH}$ will be less than $0.001%$. Furthermore, we will be able to measure the redshift evolution of the PBH merger rate with about $1%$ accuracy, making it possible to uniquely distinguish between the Poisson and clustered PBH scenarios.
We assess the detection prospects of a gravitational wave background associated with sub-luminous gamma-ray bursts (SL-GRBs). We assume that the central engines of a significant proportion of these bursts are provided by newly born magnetars and cons
Primordial black holes (PBHs) have been proposed to explain at least a portion of dark matter. Observations have put strong constraints on PBHs in terms of the fraction of dark matter which they can represent, $f_{rm PBH}$, across a wide mass range -
Ultralight primordial black holes (PBHs) with masses $lesssim 10^{15}$g and subatomic Schwarzschild radii, produced in the early Universe, are expected to have evaporated by the current cosmic age due to Hawking radiation. Based on this assumption, a
We study the prospects of future gravitational wave (GW) detectors in probing primordial black hole (PBH) binaries. We show that across a broad mass range from $10^{-5}M_odot$ to $10^7M_odot$, future GW interferometers provide a potential probe of th
The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries e