ﻻ يوجد ملخص باللغة العربية
Primordial black holes (PBHs) can form as a result of primordial scalar perturbations at small scales. This PBH formation scenario has associated gravitational wave (GW) signatures from second-order GWs induced by the primordial curvature perturbation, and from GWs produced during an early PBH dominated era. We investigate the ability of next generation GW experiments, including BBO, LISA, and CE, to probe this PBH formation scenario in a wide mass range (10 - 1e27 g). Measuring the stochastic GW background with GW observatories can constrain the allowed parameter space of PBHs including a previously unconstrained region where light PBHs (< 1e9 g) temporarily dominate the energy density of the universe before evaporating. We also show how PBH formation impacts the reach of GW observatories to the primordial power spectrum and provide constraints implied by existing PBH bounds.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia
The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes
Primordial black holes (PBHs) from the early Universe have been connected with the nature of dark matter and can significantly affect cosmological history. We show that coincidence dark radiation and density fluctuation gravitational wave signatures
Primordial black holes (PBHs) can constitute the predominant fraction of dark matter (DM) if PBHs reside in the currently unconstrained sublunar mass range. PBHs originating from scalar perturbations generated during inflation can naturally appear wi
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that gov