ترغب بنشر مسار تعليمي؟ اضغط هنا

SpEx+: A Complete Time Domain Speaker Extraction Network

332   0   0.0 ( 0 )
 نشر من قبل Chenglin Xu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Speaker extraction aims to extract the target speech signal from a multi-talker environment given a target speakers reference speech. We recently proposed a time-domain solution, SpEx, that avoids the phase estimation in frequency-domain approaches. Unfortunately, SpEx is not fully a time-domain solution since it performs time-domain speech encoding for speaker extraction, while taking frequency-domain speaker embedding as the reference. The size of the analysis window for time-domain and the size for frequency-domain input are also different. Such mismatch has an adverse effect on the system performance. To eliminate such mismatch, we propose a complete time-domain speaker extraction solution, that is called SpEx+. Specifically, we tie the weights of two identical speech encoder networks, one for the encoder-extractor-decoder pipeline, another as part of the speaker encoder. Experiments show that the SpEx+ achieves 0.8dB and 2.1dB SDR improvement over the state-of-the-art SpEx baseline, under different and same gender conditions on WSJ0-2mix-extr database respectively.

قيم البحث

اقرأ أيضاً

Speaker extraction aims to mimic humans selective auditory attention by extracting a target speakers voice from a multi-talker environment. It is common to perform the extraction in frequency-domain, and reconstruct the time-domain signal from the ex tracted magnitude and estimated phase spectra. However, such an approach is adversely affected by the inherent difficulty of phase estimation. Inspired by Conv-TasNet, we propose a time-domain speaker extraction network (SpEx) that converts the mixture speech into multi-scale embedding coefficients instead of decomposing the speech signal into magnitude and phase spectra. In this way, we avoid phase estimation. The SpEx network consists of four network components, namely speaker encoder, speech encoder, speaker extractor, and speech decoder. Specifically, the speech encoder converts the mixture speech into multi-scale embedding coefficients, the speaker encoder learns to represent the target speaker with a speaker embedding. The speaker extractor takes the multi-scale embedding coefficients and target speaker embedding as input and estimates a receptive mask. Finally, the speech decoder reconstructs the target speakers speech from the masked embedding coefficients. We also propose a multi-task learning framework and a multi-scale embedding implementation. Experimental results show that the proposed SpEx achieves 37.3%, 37.7% and 15.0% relative improvements over the best baseline in terms of signal-to-distortion ratio (SDR), scale-invariant SDR (SI-SDR), and perceptual evaluation of speech quality (PESQ) under an open evaluation condition.
Speaker extraction is to extract a target speakers voice from multi-talker speech. It simulates humans cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesnt decompose the speech signal into magnitude and phase spectrums, therefore, doesnt require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.
Target speech extraction, which extracts a single target source in a mixture given clues about the target speaker, has attracted increasing attention. We have recently proposed SpeakerBeam, which exploits an adaptation utterance of the target speaker to extract his/her voice characteristics that are then used to guide a neural network towards extracting speech of that speaker. SpeakerBeam presents a practical alternative to speech separation as it enables tracking speech of a target speaker across utterances, and achieves promising speech extraction performance. However, it sometimes fails when speakers have similar voice characteristics, such as in same-gender mixtures, because it is difficult to discriminate the target speaker from the interfering speakers. In this paper, we investigate strategies for improving the speaker discrimination capability of SpeakerBeam. First, we propose a time-domain implementation of SpeakerBeam similar to that proposed for a time-domain audio separation network (TasNet), which has achieved state-of-the-art performance for speech separation. Besides, we investigate (1) the use of spatial features to better discriminate speakers when microphone array recordings are available, (2) adding an auxiliary speaker identification loss for helping to learn more discriminative voice characteristics. We show experimentally that these strategies greatly improve speech extraction performance, especially for same-gender mixtures, and outperform TasNet in terms of target speech extraction.
In this paper, we propose an online speaker diarization system based on Relation Network, named RenoSD. Unlike conventional diariztion systems which consist of several independently-optimized modules, RenoSD implements voice-activity-detection (VAD), embedding extraction, and speaker identity association using a single deep neural network. The most striking feature of RenoSD is that it adopts a meta-learning strategy for speaker identity association. In particular, the relation network learns to learn a deep distance metric in a data-driven way and it can determine through a simple forward pass whether two given segments belong to the same speaker. As such, RenoSD can be performed in an online manner with low latency. Experimental results on AMI and CALLHOME datasets show that the proposed RenoSD system achieves consistent improvements over the state-of-the-art x-vector baseline. Compared with an existing online diarization system named UIS-RNN, RenoSD achieves a better performance using much fewer training data and at a lower time complexity.
Deep attractor networks (DANs) perform speech separation with discriminative embeddings and speaker attractors. Compared with methods based on the permutation invariant training (PIT), DANs define a deep embedding space and deliver a more elaborate r epresentation on each time-frequency (T-F) bin. However, it has been observed that the DANs achieve limited improvement on the signal quality if directly deployed in a reverberant environment. Following the success of time-domain separation networks on the clean mixture speech, we propose a time-domain DAN (TD-DAN) with two-streams of convolutional networks, which efficiently perform both dereverberation and separation tasks under the condition of a variable number of speakers. The speaker encoding stream (SES) of the TD-DAN is trained to model the speaker information in the embedding space. The speech decoding stream (SDS) accepts speaker attractors from the SES and learns to estimate early reflections from the spectro-temporal representations. Meanwhile, additional clustering losses are used to bridge the gap between the oracle and the estimated attractors. Experiments were conducted on the Spatialized Multi-Speaker Wall Street Journal (SMS-WSJ) dataset. The early reflection was compared with the anechoic and reverberant signals and then was chosen as the learning targets. The experimental results demonstrated that the TD-DAN achieved scale-invariant source-to-distortion ratio (SI-SDR) gains of 9.79/7.47 dB on the reverberant 2/3-speaker evaluation set, exceeding the baseline DAN and convolutional time-domain audio separation network (Conv-TasNet) by 1.92/0.68 dB and 0.91/0.47 dB, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا