ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an online speaker diarization system based on Relation Network, named RenoSD. Unlike conventional diariztion systems which consist of several independently-optimized modules, RenoSD implements voice-activity-detection (VAD), embedding extraction, and speaker identity association using a single deep neural network. The most striking feature of RenoSD is that it adopts a meta-learning strategy for speaker identity association. In particular, the relation network learns to learn a deep distance metric in a data-driven way and it can determine through a simple forward pass whether two given segments belong to the same speaker. As such, RenoSD can be performed in an online manner with low latency. Experimental results on AMI and CALLHOME datasets show that the proposed RenoSD system achieves consistent improvements over the state-of-the-art x-vector baseline. Compared with an existing online diarization system named UIS-RNN, RenoSD achieves a better performance using much fewer training data and at a lower time complexity.
In this work, we propose deep latent space clustering for speaker diarization using generative adversarial network (GAN) backprojection with the help of an encoder network. The proposed diarization system is trained jointly with GAN loss, latent vari
The performance of most speaker diarization systems with x-vector embeddings is both vulnerable to noisy environments and lacks domain robustness. Earlier work on speaker diarization using generative adversarial network (GAN) with an encoder network
Speaker diarization relies on the assumption that speech segments corresponding to a particular speaker are concentrated in a specific region of the speaker space; a region which represents that speakers identity. These identities are not known a pri
Speaker Diarization is the problem of separating speakers in an audio. There could be any number of speakers and final result should state when speaker starts and ends. In this project, we analyze given audio file with 2 channels and 2 speakers (on s
This paper describes the Microsoft speaker diarization system for monaural multi-talker recordings in the wild, evaluated at the diarization track of the VoxCeleb Speaker Recognition Challenge(VoxSRC) 2020. We will first explain our system design to