ﻻ يوجد ملخص باللغة العربية
Speaker extraction is to extract a target speakers voice from multi-talker speech. It simulates humans cocktail party effect or the selective listening ability. The prior work mostly performs speaker extraction in frequency domain, then reconstructs the signal with some phase approximation. The inaccuracy of phase estimation is inherent to the frequency domain processing, that affects the quality of signal reconstruction. In this paper, we propose a time-domain speaker extraction network (TseNet) that doesnt decompose the speech signal into magnitude and phase spectrums, therefore, doesnt require phase estimation. The TseNet consists of a stack of dilated depthwise separable convolutional networks, that capture the long-range dependency of the speech signal with a manageable number of parameters. It is also conditioned on a reference voice from the target speaker, that is characterized by speaker i-vector, to perform the selective listening to the target speaker. Experiments show that the proposed TseNet achieves 16.3% and 7.0% relative improvements over the baseline in terms of signal-to-distortion ratio (SDR) and perceptual evaluation of speech quality (PESQ) under open evaluation condition.
Speaker extraction aims to extract the target speech signal from a multi-talker environment given a target speakers reference speech. We recently proposed a time-domain solution, SpEx, that avoids the phase estimation in frequency-domain approaches.
Speaker extraction aims to mimic humans selective auditory attention by extracting a target speakers voice from a multi-talker environment. It is common to perform the extraction in frequency-domain, and reconstruct the time-domain signal from the ex
Target speech extraction, which extracts a single target source in a mixture given clues about the target speaker, has attracted increasing attention. We have recently proposed SpeakerBeam, which exploits an adaptation utterance of the target speaker
In this paper, we propose an online speaker diarization system based on Relation Network, named RenoSD. Unlike conventional diariztion systems which consist of several independently-optimized modules, RenoSD implements voice-activity-detection (VAD),
In this work, we propose deep latent space clustering for speaker diarization using generative adversarial network (GAN) backprojection with the help of an encoder network. The proposed diarization system is trained jointly with GAN loss, latent vari