ﻻ يوجد ملخص باللغة العربية
Learning to follow instructions is of fundamental importance to autonomous agents for vision-and-language navigation (VLN). In this paper, we study how an agent can navigate long paths when learning from a corpus that consists of shorter ones. We show that existing state-of-the-art agents do not generalize well. To this end, we propose BabyWalk, a new VLN agent that is learned to navigate by decomposing long instructions into shorter ones (BabySteps) and completing them sequentially. A special design memory buffer is used by the agent to turn its past experiences into contexts for future steps. The learning process is composed of two phases. In the first phase, the agent uses imitation learning from demonstration to accomplish BabySteps. In the second phase, the agent uses curriculum-based reinforcement learning to maximize rewards on navigation tasks with increasingly longer instructions. We create two new benchmark datasets (of long navigation tasks) and use them in conjunction with existing ones to examine BabyWalks generalization ability. Empirical results show that BabyWalk achieves state-of-the-art results on several metrics, in particular, is able to follow long instructions better. The codes and the datasets are released on our project page https://github.com/Sha-Lab/babywalk.
Recent research efforts enable study for natural language grounded navigation in photo-realistic environments, e.g., following natural language instructions or dialog. However, existing methods tend to overfit training data in seen environments and f
This paper presents a novel approach for the Vision-and-Language Navigation (VLN) task in continuous 3D environments, which requires an autonomous agent to follow natural language instructions in unseen environments. Existing end-to-end learning-base
Recent advances in the areas of multimodal machine learning and artificial intelligence (AI) have led to the development of challenging tasks at the intersection of Computer Vision, Natural Language Processing, and Embodied AI. Whereas many approache
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and na
Self attention mechanisms have become a key building block in many state-of-the-art language understanding models. In this paper, we show that the self attention operator can be formulated in terms of 1x1 convolution operations. Following this observ