ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-track Music Generation using Deep Learning

211   0   0.0 ( 0 )
 نشر من قبل Rong Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Music generation is always interesting in a sense that there is no formalized recipe. In this work, we propose a novel dual-track architecture for generating classical piano music, which is able to model the inter-dependency of left-hand and right-hand piano music. Particularly, we experimented with a lot of different models of neural network as well as different representations of music, and the results show that our proposed model outperforms all other tested methods. Besides, we deployed some special policies for model training and generation, which contributed to the model performance remarkably. Finally, under two evaluation methods, we compared our models with the MuseGAN project and true music.

قيم البحث

اقرأ أيضاً

Automatically composing pop music with a satisfactory structure is an attractive but challenging topic. Although the musical structure is easy to be perceived by human, it is difficult to be described clearly and defined accurately. And it is still f ar from being solved that how we should model the structure in pop music generation. In this paper, we propose to leverage harmony-aware learning for structure-enhanced pop music generation. On the one hand, one of the participants of harmony, chord, represents the harmonic set of multiple notes, which is integrated closely with the spatial structure of music, texture. On the other hand, the other participant of harmony, chord progression, usually accompanies with the development of the music, which promotes the temporal structure of music, form. Besides, when chords evolve into chord progression, the texture and the form can be bridged by the harmony naturally, which contributes to the joint learning of the two structures. Furthermore, we propose the Harmony-Aware Hierarchical Music Transformer (HAT), which can exploit the structure adaptively from the music, and interact on the music tokens at multiple levels to enhance the signals of the structure in various musical elements. Results of subjective and objective evaluations demonstrate that HAT significantly improves the quality of generated music, especially in the structureness.
Score-based generative models and diffusion probabilistic models have been successful at generating high-quality samples in continuous domains such as images and audio. However, due to their Langevin-inspired sampling mechanisms, their application to discrete and sequential data has been limited. In this work, we present a technique for training diffusion models on sequential data by parameterizing the discrete domain in the continuous latent space of a pre-trained variational autoencoder. Our method is non-autoregressive and learns to generate sequences of latent embeddings through the reverse process and offers parallel generation with a constant number of iterative refinement steps. We apply this technique to modeling symbolic music and show strong unconditional generation and post-hoc conditional infilling results compared to autoregressive language models operating over the same continuous embeddings.
Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succe ed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.
311 - Shulei Ji , Jing Luo , Xinyu Yang 2020
The utilization of deep learning techniques in generating various contents (such as image, text, etc.) has become a trend. Especially music, the topic of this paper, has attracted widespread attention of countless researchers.The whole process of pro ducing music can be divided into three stages, corresponding to the three levels of music generation: score generation produces scores, performance generation adds performance characteristics to the scores, and audio generation converts scores with performance characteristics into audio by assigning timbre or generates music in audio format directly. Previous surveys have explored the network models employed in the field of automatic music generation. However, the development history, the model evolution, as well as the pros and cons of same music generation task have not been clearly illustrated. This paper attempts to provide an overview of various composition tasks under different music generation levels, covering most of the currently popular music generation tasks using deep learning. In addition, we summarize the datasets suitable for diverse tasks, discuss the music representations, the evaluation methods as well as the challenges under different levels, and finally point out several future directions.
395 - Shuqi Dai , Zeyu Jin , Celso Gomes 2021
Recent advances in deep learning have expanded possibilities to generate music, but generating a customizable full piece of music with consistent long-term structure remains a challenge. This paper introduces MusicFrameworks, a hierarchical music str ucture representation and a multi-step generative process to create a full-length melody guided by long-term repetitive structure, chord, melodic contour, and rhythm constraints. We first organize the full melody with section and phrase-level structure. To generate melody in each phrase, we generate rhythm and basic melody using two separate transformer-based networks, and then generate the melody conditioned on the basic melody, rhythm and chords in an auto-regressive manner. By factoring music generation into sub-problems, our approach allows simpler models and requires less data. To customize or add variety, one can alter chords, basic melody, and rhythm structure in the music frameworks, letting our networks generate the melody accordingly. Additionally, we introduce new features to encode musical positional information, rhythm patterns, and melodic contours based on musical domain knowledge. A listening test reveals that melodies generated by our method are rated as good as or better than human-composed music in the POP909 dataset about half the time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا