ﻻ يوجد ملخص باللغة العربية
Considering the isentropic Euler equations of compressible fluid dynamics with geometric effects included, we establish the existence of entropy solutions for a large class of initial data. We cover fluid flows in a nozzle or in spherical symmetry when the origin r=0 is included. These partial differential equations are hyperbolic, but fail to be strictly hyperbolic when the fluid mass density vanishes and vacuum is reached. Furthermore, when geometric effects are taken into account, the sup-norm of solutions can not be controlled since there exist no invariant regions. To overcome these difficulties and to establish an existence theory for solutions with arbitrarily large amplitude, we search for solutions with finite mass and total energy. Our strategy of proof takes advantage of the particular structure of the Euler equations, and leads to a versatile framework covering general compressible fluid problems. We establish first higher-integrability estimates for the mass density and the total energy. Next, we use arguments from the theory of compensated compactness and Young measures, extended here to sequences of solutions with finite mass and total energy. The third ingredient of the proof is a characterization of the unbounded support of entropy admissible Young measures. This requires the study of singular products involving measures and principal values.
In this note, we prove that the solutions obtained to the spherically symmetric Euler equations in the recent works [2, 3] are weak solutions of the multi-dimensional compressible Euler equations. This follows from new uniform estimates made on the a
On the set of dissipative solutions to the multi-dimensional isentropic Euler equations we introduce a quasi-order by comparing the acceleration at all times. This quasi-order is continuous with respect to a suitable notion of convergence of dissipat
In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are d
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence
In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an $L^1$ function, extending the Lagrangian theory in cite{BouchutCri