ﻻ يوجد ملخص باللغة العربية
We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of Aschieri et al. (Class. Quantum Grav. 23, 1883-1911, 2006), whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfeld twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2$, $AdS_2$].
We propose a general procedure to construct noncommutative deformations of an embedded submanifold $M$ of $mathbb{R}^n$ determined by a set of smooth equations $f^a(x)=0$. We use the framework of Drinfeld twist deformation of differential geometry of
The FLRW spacetimes can be realized as submanifolds of $mathbb{R}^6$. In this paper we relate the Laplace-Beltrami operator for an homogeneous scalar field $phi$ of $mathbb{R}^6$ to its explicit restriction on FLRW spacetimes. We then make the link b
A general formula is calculated for the connection of a central metric w.r.t. a noncommutative spacetime of Lie-algebraic type. This is done by using the framework of linear connections on central bi-modules. The general formula is further on used to
We obtain certain Mellin-Barnes integrals which present wave functions for $GL(n,mathbb{R})$ hyperbolic Sutherland model with arbitrary positive coupling constant.
We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N times mathbb{R}$, where $N$ is an $n$-dimensional complete Riemannian manifold with radial sectional curvature $K_{N} leq kappa$. Wh