ﻻ يوجد ملخص باللغة العربية
A general formula is calculated for the connection of a central metric w.r.t. a noncommutative spacetime of Lie-algebraic type. This is done by using the framework of linear connections on central bi-modules. The general formula is further on used to calculate the corresponding Riemann tensor and prove the corresponding Bianchi identities and certain symmetries that are essential to obtain a symmetric and divergenceless Einstein Tensor. In particular, the obtained Einstein Tensor is not equivalent to the sum of the noncommutative Riemann tensor and scalar, as in the commutative case, but in addition a traceless term appears.
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with
We give an upper bound of the relative entanglement entropy of the ground state of a massive Dirac-Majorana field across two widely separated regions $A$ and $B$ in a static slice of an ultrastatic Lorentzian spacetime. Our bound decays exponentially
We give an introduction to the techniques from microlocal analysis that have successfully been applied in the investigation of Hadamard states of free quantum field theories on curved spacetimes. The calculation of the wave front set of the two point
In which is developed a new form of superselection sectors of topological origin. By that it is meant a new investigation that includes several extensions of the traditional framework of Doplicher, Haag and Roberts in local quantum theories. At first
We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth subman