ﻻ يوجد ملخص باللغة العربية
We propose a general procedure to construct noncommutative deformations of an embedded submanifold $M$ of $mathbb{R}^n$ determined by a set of smooth equations $f^a(x)=0$. We use the framework of Drinfeld twist deformation of differential geometry of [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product is replaced by a (generally noncommutative) $star$-product determined by a Drinfeld twist. The twists we employ are based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the submanifolds that are level sets of the $f^a$; the twisted Cartan calculus is automatically equivariant under twisted tangent infinitesimal diffeomorphisms. We can consistently project a connection from the twisted $mathbb{R}^n$ to the twisted $M$ if the twist is based on a suitable Lie subalgebra $mathfrak{e}subsetXi_t$. If we endow $mathbb{R}^n$ with a metric then twisting and projecting to the normal and tangent vector fields commute, and we can project the Levi-Civita connection consistently to the twisted $M$, provided the twist is based on the Lie subalgebra $mathfrak{k}subsetmathfrak{e}$ of the Killing vector fields of the metric; a twisted Gauss theorem follows, in particular. Twisted algebraic manifolds can be characterized in terms of generators and polynomial relations. We present in some detail twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [these are twisted (anti-)de Sitter spaces $dS_2,AdS_2$].
We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth subman
The FLRW spacetimes can be realized as submanifolds of $mathbb{R}^6$. In this paper we relate the Laplace-Beltrami operator for an homogeneous scalar field $phi$ of $mathbb{R}^6$ to its explicit restriction on FLRW spacetimes. We then make the link b
Big bang nucleosynthesis in a modified gravity model of $f(R)propto R^n$ is investigated. The only free parameter of the model is a power-law index $n$. We find cosmological solutions in a parameter region of $1< n leq (4+sqrt{6})/5$. We calculate ab
Supergroups are defined in the framework of $dZ_2$-graded Clifford algebras over the fields of real and complex numbers, respectively. It is shown that cyclic structures of complex and real supergroups are defined by Brauer-Wall groups related with t
We give an introduction to the techniques from microlocal analysis that have successfully been applied in the investigation of Hadamard states of free quantum field theories on curved spacetimes. The calculation of the wave front set of the two point