ﻻ يوجد ملخص باللغة العربية
We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs). We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2. To our best knowledge, this algorithm is the first formulation that integrates three mainstream model compression ideas: sparsification or pruning, decomposition, and quantization, into one unified framework. The resulting sparse and readily-quantized DNN thus enjoys greatly reduced energy consumption in data movement as well as weight storage. On top of that, we further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance. Extensive experiments show that 1) on the algorithm level, SmartExchange outperforms state-of-the-art compression techniques, including merely sparsification or pruning, decomposition, and quantization, in various ablation studies based on nine DNN models and four datasets; and 2) on the hardware level, the proposed SmartExchange based accelerator can improve the energy efficiency by up to 6.7$times$ and the speedup by up to 19.2$times$ over four state-of-the-art DNN accelerators, when benchmarked on seven DNN models (including four standard DNNs, two compact DNN models, and one segmentation model) and three datasets.
Secure Computation (SC) is a family of cryptographic primitives for computing on encrypted data in single-party and multi-party settings. SC is being increasingly adopted by industry for a variety of applications. A significant obstacle to using SC f
The increasing demand for democratizing machine learning algorithms calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters which can cause a large variation in the training cost. But t
Inverse optimal transport (OT) refers to the problem of learning the cost function for OT from observed transport plan or its samples. In this paper, we derive an unconstrained convex optimization formulation of the inverse OT problem, which can be f
We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each labels cost and predicting the smallest. On a new
Databases need to allocate and free blocks of storage on disk. Freed blocks introduce holes where no data is stored. Allocation systems attempt to reuse such deallocated regions in order to minimize the footprint on disk. If previously allocated bloc