ﻻ يوجد ملخص باللغة العربية
Effects of the spin-orbit coupling (SOC) and magnetic field on excitonic insulating (EI) states are investigated. We introduce the two-orbital Hubbard model with the crystalline field splitting, which is a minimal model for discussing the exciton condensation in strongly correlated electron systems, and analyze its effective Hamiltonian in the strong correlation limit by using the mean-field theory. In the absence of the SOC and magnetic field, the ground state changes from the nonmagnetic band-insulating state to the EI state by increasing the Hund coupling. In an applied magnetic field, the magnetic moment appears in the EI state, which is continuously connected to the forced ferromagnetic state. On the other hand, in the presence of the SOC, they are separated by a phase boundary. We find that the magnetic susceptibility is strongly enhanced in the EI phase near the boundary with a small SOC. This peculiar behavior is attributed to the low-energy fluctuation of the spin nematicity inherent in the high-spin local state stabilized by the Hund coupling. The present study not only reveals the impact of the SOC for the EI state but also sheds light on the role of quantum fluctuations of the spin nematicity for the EI state.
Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [S
We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamilt
We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2/3Ca1/3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assu
We present a study on magnetotransport in films of the topological Dirac semimetal Cd$_{3}$As$_{2}$ doped with Sb grown by molecular beam epitaxy. In our weak antilocalization analysis, we find a significant enhancement of the spin-orbit scattering r
We construct and analyze a microscopic model for insulating rock salt ordered double perovskites, with the chemical formula A$_2$BBO$_6$, where the B atom has a 4d$^1$ or 5d$^1$ electronic configuration and forms a face centered cubic (fcc) lattice.