ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong enhancement of magnetic susceptibility induced by spin-nematic fluctuations in an excitonic insulating system with spin-orbit coupling

106   0   0.0 ( 0 )
 نشر من قبل Joji Nasu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of the spin-orbit coupling (SOC) and magnetic field on excitonic insulating (EI) states are investigated. We introduce the two-orbital Hubbard model with the crystalline field splitting, which is a minimal model for discussing the exciton condensation in strongly correlated electron systems, and analyze its effective Hamiltonian in the strong correlation limit by using the mean-field theory. In the absence of the SOC and magnetic field, the ground state changes from the nonmagnetic band-insulating state to the EI state by increasing the Hund coupling. In an applied magnetic field, the magnetic moment appears in the EI state, which is continuously connected to the forced ferromagnetic state. On the other hand, in the presence of the SOC, they are separated by a phase boundary. We find that the magnetic susceptibility is strongly enhanced in the EI phase near the boundary with a small SOC. This peculiar behavior is attributed to the low-energy fluctuation of the spin nematicity inherent in the high-spin local state stabilized by the Hund coupling. The present study not only reveals the impact of the SOC for the EI state but also sheds light on the role of quantum fluctuations of the spin nematicity for the EI state.

قيم البحث

اقرأ أيضاً

Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [S akurai $textit{et al.}$ 1968 Phys. Rev. $mathbf{167}$ 510]. Despite identifying magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below $Trm{_{N}}$ using conventional pseudo-bosonic approaches. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-$T_{c}$ cuprate superconductors [Bednorz & Muller 1986 Z. Phys. B $mathbf{64}$ 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue MgO. These experiments would prove instrumental in the determination of both single-ion [Cowley $textit{et al.}$ 2013 Phys. Rev. B $mathbf{88}$ 205117] and cooperative magnetic parameters [Sarte $textit{et al.}$ 2018 Phys. Rev. B $mathbf{98}$ 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte $textit{et al.}$ 2019 Phys. Rev. B $mathbf{100}$ 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.
We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamilt onian in the strong-interaction limit. Applying this theory to a minimal model of $alpha$-RuCl$_{3}$, we show that the magnitudes and signs of three exchange interactions, $J$, $K$, and $Gamma$, can be changed simultaneously. Then, considering another case in which one of the hopping integrals has a different value and the other parameters are the same as those for $alpha$-RuCl$_{3}$, we show that the Heisenberg interaction $J$ can be made much smaller than the anisotropic exchange interactions $K$ and $Gamma$.
We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2/3Ca1/3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assu med to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of gigantic gyrotropic responses that can be harnessed for nonreciprocal devices that exploit the polarization of light.
We present a study on magnetotransport in films of the topological Dirac semimetal Cd$_{3}$As$_{2}$ doped with Sb grown by molecular beam epitaxy. In our weak antilocalization analysis, we find a significant enhancement of the spin-orbit scattering r ate, indicating that Sb doping leads to a strong increase of the pristine band-inversion energy. We discuss possible origins of this large enhancement by comparing Sb-doped Cd$_{3}$As$_{2}$ with other compound semiconductors. Sb-doped Cd$_{3}$As$_{2}$ will be a suitable system for further investigations and functionalization of topological Dirac semimetals.
We construct and analyze a microscopic model for insulating rock salt ordered double perovskites, with the chemical formula A$_2$BBO$_6$, where the B atom has a 4d$^1$ or 5d$^1$ electronic configuration and forms a face centered cubic (fcc) lattice. The combination of the triply-degenerate $t_{2g}$ orbital and strong spin-orbit coupling forms local quadruplets with an effective spin moment $j=3/2$. Moreover, due to strongly orbital-dependent exchange, the effective spins have substantial biquadratic and bicubic interactions (fourth and sixth order in the spins, respectively). This leads, at the mean field level, to three main phases: an unusual antiferromagnet with dominant octupolar order, a ferromagnetic phase with magnetization along the $[110]$ direction, and a non-magnetic but quadrupolar ordered phase, which is stabilized by thermal fluctuations and intermediate temperatures. All these phases have a two sublattice structure described by the ordering wavevector ${boldsymbol Q} =2pi (001)$. We consider quantum fluctuations and argue that in the regime of dominant antiferromagnetic exchange, a non-magnetic valence bond solid or quantum spin liquid state may be favored instead. Candidate quantum spin liquid states and their basic properties are described. We also address the effect of single-site anisotropy driven by lattice distortions. Existing and possible future experiments are discussed in light of these results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا