ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Fluctuations and the Spin-Orbit Interaction in Mott Insulating CoO

88   0   0.0 ( 0 )
 نشر من قبل Chris Stock
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai $textit{et al.}$ 1968 Phys. Rev. $mathbf{167}$ 510]. Despite identifying magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below $Trm{_{N}}$ using conventional pseudo-bosonic approaches. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-$T_{c}$ cuprate superconductors [Bednorz & Muller 1986 Z. Phys. B $mathbf{64}$ 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue MgO. These experiments would prove instrumental in the determination of both single-ion [Cowley $textit{et al.}$ 2013 Phys. Rev. B $mathbf{88}$ 205117] and cooperative magnetic parameters [Sarte $textit{et al.}$ 2018 Phys. Rev. B $mathbf{98}$ 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte $textit{et al.}$ 2019 Phys. Rev. B $mathbf{100}$ 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.

قيم البحث

اقرأ أيضاً

CoO has an odd number of electrons in its unit cell, and therefore is expected to be metallic. Yet, CoO is strongly insulating owing to significant electronic correlations, thus classifying it as a Mott insulator. We investigate the magnetic fluctuat ions in CoO using neutron spectroscopy. The strong and spatially far-reaching exchange constants reported in [Sarte et al. Phys. Rev. B 98 024415 (2018)], combined with the single-ion spin-orbit coupling of similar magnitude [Cowley et al. Phys. Rev. B 88, 205117 (2013)] results in significant mixing between $j_{eff}$ spin-orbit levels in the low temperature magnetically ordered phase. The high degree of entanglement, combined with the structural domains originating from the Jahn-Teller structural distortion at $sim$ 300 K, make the magnetic excitation spectrum highly structured in both energy and momentum. We extend previous theoretical work on PrTl$_{3}$ [Buyers et al. Phys. Rev. B 11, 266 (1975)] to construct a mean-field and multi-level spin exciton model employing the aforementioned spin exchange and spin-orbit coupling parameters for coupled Co$^{2+}$ ions on a rocksalt lattice. This parameterization, based on a tetragonally distorted type-II antiferromagnetic unit cell, captures both the sharp low energy excitations at the magnetic zone center, and the energy broadened peaks at the zone boundary. However, the model fails to describe the momentum dependence of the excitations at high energy transfers, where the neutron response decays faster with momentum than the Co$^{2+}$ form factor. We discuss such a failure in terms of a possible breakdown of localized spin-orbit excitons at high energy transfers.
Effects of the spin-orbit coupling (SOC) and magnetic field on excitonic insulating (EI) states are investigated. We introduce the two-orbital Hubbard model with the crystalline field splitting, which is a minimal model for discussing the exciton con densation in strongly correlated electron systems, and analyze its effective Hamiltonian in the strong correlation limit by using the mean-field theory. In the absence of the SOC and magnetic field, the ground state changes from the nonmagnetic band-insulating state to the EI state by increasing the Hund coupling. In an applied magnetic field, the magnetic moment appears in the EI state, which is continuously connected to the forced ferromagnetic state. On the other hand, in the presence of the SOC, they are separated by a phase boundary. We find that the magnetic susceptibility is strongly enhanced in the EI phase near the boundary with a small SOC. This peculiar behavior is attributed to the low-energy fluctuation of the spin nematicity inherent in the high-spin local state stabilized by the Hund coupling. The present study not only reveals the impact of the SOC for the EI state but also sheds light on the role of quantum fluctuations of the spin nematicity for the EI state.
Magnetism in transition-metal compounds (TMCs) has traditionally been associated with spin degrees of freedom, because the orbital magnetic moments are typically largely quenched. On the other hand, magnetic order in 4f- and 5d-electron systems arise s from spin and orbital moments that are rigidly tied together by the large intra-atomic spin-orbit coupling (SOC). Using inelastic neutron scattering on the archetypal 4d-electron Mott insulator Ca$_2$RuO$_4$, we report a novel form of excitonic magnetism in the intermediate-strength regime of the SOC. The magnetic order is characterized by ``soft magnetic moments with large amplitude fluctuations manifested by an intense, low-energy excitonic mode analogous to the Higgs mode in particle physics. This mode heralds a proximate quantum critical point separating the soft magnetic order driven by the superexchange interaction from a quantum-paramagnetic state driven by the SOC. We further show that this quantum critical point can be tuned by lattice distortions, and hence may be accessible in epitaxial thin-film structures. The unconventional spin-orbital-lattice dynamics in Ca$_2$RuO$_4$ identifies the SOC as a novel source of quantum criticality in TMCs.
114 - He Zhao , Zach Porter , Xiang Chen 2021
Correlated oxides can exhibit complex magnetic patterns, characterized by domains with vastly different size, shape and magnetic moment spanning the material. Understanding how magnetic domains form in the presence of chemical disorder and their robu stness to temperature variations has been of particular interest, but atomic-scale insight into this problem has been limited. We use spin-polarized scanning tunneling microscopy to image the evolution of spin-resolved modulations originating from antiferromagnetic (AF) ordering in a spin-orbit Mott insulator Sr3Ir2O7 as a function of chemical composition and temperature. We find that replacing only several percent of La for Sr leaves behind nanometer-scale AF puddles clustering away from La substitutions preferentially located in the middle SrO layer within the unit cell. Thermal erasure and re-entry into the low-temperature ground state leads to a spatial reorganization of the AF modulations, indicating multiple stable AF configurations at low temperature. Interestingly, regardless of this rearrangement, the AF puddles maintain scale-invariant fractal geometry in each configuration. Our experiments reveal spatial fluctuations of the AF order in electron doped Sr3Ir2O7, and shed light on its sensitivity to different types of atomic-scale disorder.
Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusio n of both correlation and spin-orbit coupling (SOC) effects leads to a metal-insulator transition and in-plane zigzag orbital-ordering (OO) of alternating singly filled $d_{xz}+id_{yz}$ and $d_{xz}-id_{yz}$ orbitals, which results in a large orbital moment $M_L$ ~ -0.78 $mu_B$ antialigned to the spin moment $M_S$ ~ $2|M_L|$ in Cr ions. Remarkably, this ordering also induces a considerable $M_L$ for apical oxygens. Our findings show metal-insulator and OO transitions, driven by an interplay among strain, correlation, and SOC, which is uncommon in 3d systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا