ﻻ يوجد ملخص باللغة العربية
We present a study on magnetotransport in films of the topological Dirac semimetal Cd$_{3}$As$_{2}$ doped with Sb grown by molecular beam epitaxy. In our weak antilocalization analysis, we find a significant enhancement of the spin-orbit scattering rate, indicating that Sb doping leads to a strong increase of the pristine band-inversion energy. We discuss possible origins of this large enhancement by comparing Sb-doped Cd$_{3}$As$_{2}$ with other compound semiconductors. Sb-doped Cd$_{3}$As$_{2}$ will be a suitable system for further investigations and functionalization of topological Dirac semimetals.
To probe the charge scattering mechanism in Cd$_{3}$As$_{2}$ single crystal, we have analyzed the temperature and magnetic field dependence of the Seebeck coefficient ($S$). The large saturation value of $S$ at high field clearly demonstrates the lin
Cd$_3$As$_2$ is one of the prototypical topological Dirac semimetals. Here, we manipulate the band inversion responsible for the emergence of Dirac nodes by alloying Cd$_3$As$_2$ with topologically trivial Zn$_3$As$_2$. We observe the expected topolo
We demonstrate an enhancement of the spin-orbit coupling in silicon (Si) thin films by doping with bismuth (Bi), a heavy metal, using ion implantation. Quantum corrections to conductance at low temperature in phosphorous-doped Si before and after Bi
We report magnetotransport properties of BaZnBi$_{2}$ single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by
Unconventional surface states protected by non-trivial bulk orders are sources of various exotic quantum transport in topological materials. One prominent example is the unique magnetic orbit, so-called Weyl orbit, in topological semimetals where two