ﻻ يوجد ملخص باللغة العربية
We develop a numerical linked cluster expansion (NLCE) method that can be applied directly to inhomogeneous systems, for example Hamiltonians with disorder and dynamics initiated from inhomogeneous initial states. We demonstrate the method by calculating dynamics for single-spin expectations and spin correlations in two-dimensional spin models on a square lattice, starting from a checkerboard state. We show that NLCE can give moderate to dramatic improvement over an exact diagonalization of comparable computational cost, and that the advantage in computational resources grows exponentially as the size of the clusters included grows. Although the method applies to any type of NLCE, our explicit benchmarks use the rectangle expansion. Besides showing the capability to treat inhomogeneous systems, these benchmarks demonstrate the rectangle expansions utility out of equilibrium.
We develop strong-coupling series expansion methods to study two-particle spectra of quantum lattice models. At the heart of the method lies the calculation of an effective Hamiltonian in the two-particle subspace. We explicitly consider an orthogona
We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small
We identify a fundamental challenge for non-perturbative linked cluster expansions (NLCEs) resulting from the reduced symmetry on graphs, most importantly the breaking of translational symmetry, when targeting the properties of excited states. A gene
Quantum coherence quantifies the amount of superposition a quantum state can have in a given basis. Since there is a difference in the structure of eigenstates of the ergodic and many-body localized systems, we expect them also to differ in terms of
We generalize the family of approximate momentum average methods to formulate a numerically exact, convergent hierarchy of equations whose solution provides an efficient algorithm to compute the Greens function of a particle dressed by bosons suitabl