ﻻ يوجد ملخص باللغة العربية
We develop strong-coupling series expansion methods to study two-particle spectra of quantum lattice models. At the heart of the method lies the calculation of an effective Hamiltonian in the two-particle subspace. We explicitly consider an orthogonality transformation to generate this block diagonalization, and find that maintaining orthogonality is crucial for systems where the ground state and the two-particle subspace are characterized by identical quantum numbers. We discuss the solution of the two-particle Schrodinger equation by using a finite lattice approach in coordinate space or by an integral equation in momentum space. These methods allow us to precisely determine the low-lying excitation spectra of the models at hand, including all two-particle bound/antibound states. Further, we discuss how to generate series expansions for the dispersions of the bound/antibound states. These allow us to employ series extrapolation techniques, whereby binding energies can be determined even when the expansion parameters are not small. We apply the method to the (1+1)D transverse Ising model and the two-leg spin-$case 1/2$ Heisenberg ladder. For the latter model, we also calculate the coherence lengths and determine the critical properties where bound states merge with the two-particle continuum.
We develop a numerical linked cluster expansion (NLCE) method that can be applied directly to inhomogeneous systems, for example Hamiltonians with disorder and dynamics initiated from inhomogeneous initial states. We demonstrate the method by calcula
We identify a fundamental challenge for non-perturbative linked cluster expansions (NLCEs) resulting from the reduced symmetry on graphs, most importantly the breaking of translational symmetry, when targeting the properties of excited states. A gene
The S=1/2 Heisenberg bilayer spin model at zero temperature is studied in the dimerized phase using analytic triplet-wave expansions and dimer series expansions. The occurrence of two-triplon bound states in the S=0 and S=1 channels, and antibound st
We propose a generalization of the linked-cluster expansions to study driven-dissipative quantum lattice models, directly accessing the thermodynamic limit of the system. Our method leads to the evaluation of the desired extensive property onto small
We present new results for the Kondo lattice model of strongly correlated electrons, in 1-, 2-, and 3-dimensions, obtained from high-order linked-cluster series expansions. Results are given for varies ground state properties at half-filling, and for