ﻻ يوجد ملخص باللغة العربية
A saturation spectroscopy measurement of the P(1) line of the ($2-0$) band in HD is performed in a sensitive cavity-enhanced optical setup involving frequency comb calibration. The spectral signature is that of a Lamb-peak, in agreement with a density-matrix model description involving 9 hyperfine components and 16 crossover resonances of $Lambda$-type. Comparison of the experimental spectra with the simulations yields a rovibrational transition frequency at 209,784,242,007 (20) kHz. Agreement is found with a first principles calculation in the framework of non-adiabatic quantum electrodynamics within 2$sigma$, where the combined uncertainty is fully determined by theory.
The saturation spectrum of the R(1) transition in the (2-0) band in HD is found to exhibit a composite line shape, involving a Lamb-dip and a Lamb-peak. We propose an explanation for such behavior based on the effects of cross-over resonances in the
We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-
Ab initio calculations of QED radiative corrections to the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure transition energy are performed for selected F-like ions. These calculations are nonperturbative in $alpha Z$ and include all first-order and many-ele
We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qu
We report on the sub-Doppler laser cooling of neutral $^{171}$Yb and $^{173}$Yb in a magneto-optical trap using the $^{1}S_{0}$-$^{1}P_{1}$ transition at 398.9nm. We use two independent means to estimate the temperature of the atomic cloud for severa