ترغب بنشر مسار تعليمي؟ اضغط هنا

Lamb-peak spectrum of the HD (2-0) P(1) line

63   0   0.0 ( 0 )
 نشر من قبل Wim Ubachs
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A saturation spectroscopy measurement of the P(1) line of the ($2-0$) band in HD is performed in a sensitive cavity-enhanced optical setup involving frequency comb calibration. The spectral signature is that of a Lamb-peak, in agreement with a density-matrix model description involving 9 hyperfine components and 16 crossover resonances of $Lambda$-type. Comparison of the experimental spectra with the simulations yields a rovibrational transition frequency at 209,784,242,007 (20) kHz. Agreement is found with a first principles calculation in the framework of non-adiabatic quantum electrodynamics within 2$sigma$, where the combined uncertainty is fully determined by theory.



قيم البحث

اقرأ أيضاً

71 - M. L. Diouf 2019
The saturation spectrum of the R(1) transition in the (2-0) band in HD is found to exhibit a composite line shape, involving a Lamb-dip and a Lamb-peak. We propose an explanation for such behavior based on the effects of cross-over resonances in the hyperfine substructure, which is made quantitative in a density-matrix calculation. This resolves an outstanding discrepancy on the rovibrational R(1) transition frequency, which is now determined at 217 105 181 901 (50) kHz and in agreement with current theoretical calculations.
We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi- coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new determination of the proton-to-electron mass ratio, and studies of the time (in)dependence of the latter.
Ab initio calculations of QED radiative corrections to the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure transition energy are performed for selected F-like ions. These calculations are nonperturbative in $alpha Z$ and include all first-order and many-ele ctron second-order effects in $alpha$. When compared to approximate QED computations, a notable discrepancy is found especially for F-like uranium for which the predicted self-energy contributions even differ in sign. Moreover, all deviations between theory and experiment for the $^2P_{1/2}$ - $^2P_{3/2}$ fine-structure energies of F-like ions, reported recently by Li et al., Phys. Rev. A 98, 020502(R) (2018), are resolved if their highly accurate, non-QED fine-structure values are combined with the QED corrections ab initially evaluated here.
84 - A.I.Milstein , O. P. Sushkov , 2002
We consider corrections to the Lamb shift of p-wave atomic states due to the finite nuclear size (FNS). In other words, these are radiative corrections to the atomic isotop shift related to FNS. It is shown that the structure of the corrections is qu alitatively different from that for s-wave states. The perturbation theory expansion for the relative correction for a $p_{1/2}$-state starts from $alphaln(1/Zalpha)$-term, while for $s_{1/2}$-states it starts from $Zalpha^2$ term. Here $alpha$ is the fine structure constant and $Z$ is the nuclear charge. In the present work we calculate the $alpha$-terms for $2p$-states, the result for $2p_{1/2}$-state reads $(8alpha/9pi)[ln(1/(Zalpha)^2)+0.710]$. Even more interesting are $p_{3/2}$-states. In this case the ``correction is by several orders of magnitude larger than the ``leading FNS shift.
We report on the sub-Doppler laser cooling of neutral $^{171}$Yb and $^{173}$Yb in a magneto-optical trap using the $^{1}S_{0}$-$^{1}P_{1}$ transition at 398.9nm. We use two independent means to estimate the temperature of the atomic cloud for severa l of the Yb isotopes. The two methods of MOT-cloud-imaging and release-and-recapture show consistency with one another. Temperatures below 400$mu$K and 200$mu$K are recorded for $^{171}$Yb and $^{173}$Yb, respectively, while ~1mK is measured for both $^{172}$Yb and $^{174}$Yb. By comparison, the associated 1D Doppler cooling temperature limit is 694$mu$K. The sub-Doppler cooling of the I=1/2 $^{171}$Yb isotope in a $sigma^{+}-sigma^{-}$ light-field trap adds further evidence that the Sisyphus cooling mechanism is occurring in such 3D magneto-optical traps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا