ﻻ يوجد ملخص باللغة العربية
We report on the sub-Doppler laser cooling of neutral $^{171}$Yb and $^{173}$Yb in a magneto-optical trap using the $^{1}S_{0}$-$^{1}P_{1}$ transition at 398.9nm. We use two independent means to estimate the temperature of the atomic cloud for several of the Yb isotopes. The two methods of MOT-cloud-imaging and release-and-recapture show consistency with one another. Temperatures below 400$mu$K and 200$mu$K are recorded for $^{171}$Yb and $^{173}$Yb, respectively, while ~1mK is measured for both $^{172}$Yb and $^{174}$Yb. By comparison, the associated 1D Doppler cooling temperature limit is 694$mu$K. The sub-Doppler cooling of the I=1/2 $^{171}$Yb isotope in a $sigma^{+}-sigma^{-}$ light-field trap adds further evidence that the Sisyphus cooling mechanism is occurring in such 3D magneto-optical traps.
Optical frequency measurements of the intercombination line $(6s^{2}),^{1}S_{0} -(6s6p),^{3}P_{1}$ in the isotopes of ytterbium are carried out with the use of sub-Doppler fluorescence spectroscopy on an atomic beam. A dispersive signal is generated
Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale
We report an observation of the weak $6^{1}$S$_{0}$-$6^3$P$_0$ transition in $^{171,173}$Yb as an important step to establish Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the $^{1}$S
The highly forbidden $^2$S$_{1/2} rightarrow ^2$F$_{7/2}$ electric octupole transition in $^{171}$Yb$^+$ is a potential candidate for a redefinition of the SI second. We present a measurement of the absolute frequency of this optical transition, perf
A saturation spectroscopy measurement of the P(1) line of the ($2-0$) band in HD is performed in a sensitive cavity-enhanced optical setup involving frequency comb calibration. The spectral signature is that of a Lamb-peak, in agreement with a densit