ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-photon spectroscopy of trapped HD$^+$ ions in the Lamb-Dicke regime

194   0   0.0 ( 0 )
 نشر من قبل Laurent Hilico
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the feasibility of nearly-degenerate two-photon rovibrational spectroscopy in ensembles of trapped, sympathetically cooled hydrogen molecular ions using a resonance-enhanced multiphoton dissociation (REMPD) scheme. Taking advantage of quasi-coincidences in the rovibrational spectrum, the excitation lasers are tuned close to an intermediate level to resonantly enhance two-photon absorption. Realistic simulations of the REMPD signal are obtained using a four-level model that takes into account saturation effects, ion trajectories, laser frequency noise and redistribution of population by blackbody radiation. We show that the use of counterpropagating laser beams enables optical excitation in an effective Lamb-Dicke regime. Sub-Doppler lines having widths in the 100 Hz range can be observed with good signal-to-noise ratio for an optimal choice of laser detunings. Our results indicate the feasibility of molecular spectroscopy at the $10^{-14}$ accuracy level for improved tests of molecular QED, a new determination of the proton-to-electron mass ratio, and studies of the time (in)dependence of the latter.



قيم البحث

اقرأ أيضاً

We report Raman sideband cooling of a single sodium atom to its three-dimensional motional ground state in an optical tweezer. Despite a large Lamb-Dicke parameter, high initial temperature, and large differential light shifts between the excited sta te and the ground state, we achieve a ground state population of $93.5(7)$% after $53$ ms of cooling. Our technique includes addressing high-order sidebands, where several motional quanta are removed by a single laser pulse, and fast modulation of the optical tweezer intensity. We demonstrate that Raman sideband cooling to the 3D motional ground state is possible, even without tight confinement and low initial temperature.
71 - M. L. Diouf 2019
The saturation spectrum of the R(1) transition in the (2-0) band in HD is found to exhibit a composite line shape, involving a Lamb-dip and a Lamb-peak. We propose an explanation for such behavior based on the effects of cross-over resonances in the hyperfine substructure, which is made quantitative in a density-matrix calculation. This resolves an outstanding discrepancy on the rovibrational R(1) transition frequency, which is now determined at 217 105 181 901 (50) kHz and in agreement with current theoretical calculations.
Expectation values of the Breit operators and the $Q$ terms are calculated for HD$^+$ with the vibrational number $v=0-4$ and the total angular momentum $L=0-4$. Relativistic and radiative corrections to some ro-vibrational transition frequencies are determined. Numerical uncertainty in $R_{infty}alpha^2$ order correction is reduced to sub kHz or smaller. Our work provides an independent verification of Korobovs calculations [Phys. Rev. A {bf74}, 052506 (2006); {bf77}, 022509 (2008)].
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.
Doppler broadening plays an important role in laser rovibrational spectroscopy of trapped deuterated molecular hydrogen ions (HD$^+$), even at the millikelvin temperatures achieved through sympathetic cooling by laser-cooled beryllium ions. Recently, Biesheuvel textit{et al.} cite{Biesheuvel2016} presented a theoretical lineshape model for such transitions which not only considers linestrengths and Doppler broadening, but also the finite sample size and population redistribution by blackbody radiation, which are important in view of the long storage and probe times achievable in ion traps. Here, we employ the rate equation model developed by Biesheuvel textit{et al.} to theoretically study the Doppler-broadened hyperfine structure of the $(v,L):(0,3)rightarrow(4,2)$ rovibrational transition in HD$^+$ at 1442~nm. We observe prominent yet hitherto unrecognized ghost features in the simulated spectrum, whose positions depend on the Doppler width, transition rates, and saturation levels of the hyperfine components addressed by the laser. We explain the origin and behavior of such features, and we provide a simple quantitative guideline to assess whether ghost features may appear. As such ghost features may be common to saturated Doppler-broadened spectra of rotational and vibrational transitions in trapped ions composed of partly overlapping lines, our work illustrates the necessity to use lineshape models that take into account all the relevant physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا