ﻻ يوجد ملخص باللغة العربية
The rare top quark decays mediated by a new neutral massive gauge boson that is predicted in models with extended gauge symmetries are studied. We focus on the processes $tto cV, uV$ induced at the one loop level, where $V =gamma, g$, by considering different extended models. It is found that, within a broad range of mass of the new neutral gauge boson, the models predict branching ratios for the decays in study that are competitive with respect to the corresponding branching ratios in the standard model. In order to establish bound on our branching ratios, we consider the recent experimental bounds as $m_{Z^prime}geq$ 3.8-4.5 TeV, depending on the model, which also impose restrictions on our calculation. Even in this case, the resulting branching ratios are of the same order of magnitude as that predicted by the standard model. It should be noted that for the case of two models studied here, since no experimental bound exists to compare with, the results could be important, as they are, in the best of cases, two orders of magnitude larger than the predicted by the standard model.
In this work we study the flavor changing neutral current(FCNC) decays of the top quark, $tto cgamma$ and $tto c g$. The Standard Model, predictions for the branching ratios of these decays are about $sim 5times 10^{-14}$, and $sim 1times 10^{-12}$,
We propose a novel strategy to test lepton flavor universality (LFU) in top decays, applicable to top pair production at colliders. Our proposal exploits information in kinematic distributions and mostly hinges on data-driven techniques, thus having
The electromagnetic dipole moments of the tau lepton and the chromoelectromagnetic dipole moments of the top quark are estimated via flavor-changing neutral currents, mediated by a new neutral massive gauge boson. We predict them in the context of mo
The possibility of detecting double flavor violating top quark transitions $t to u_itau mu$ ($u_i=u,c$) is explored in a model--independent manner, using the effective Lagrangian approach. Low--energy data, on high precision measurements, and current
Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most g