ﻻ يوجد ملخص باللغة العربية
In this work we study the flavor changing neutral current(FCNC) decays of the top quark, $tto cgamma$ and $tto c g$. The Standard Model, predictions for the branching ratios of these decays are about $sim 5times 10^{-14}$, and $sim 1times 10^{-12}$, respectively. The recent study presented by the ATLAS Collaboration gives a sensitivity on these branching ratios about $sim 10^{-5}$ at $%95$ C.L. The parameter space of $lambda$, $Lambda$, and $d$ where the branching ratios of $tto cgamma$ and $tto c g$ decays exceed these predictions is obtained.
We propose a novel strategy to test lepton flavor universality (LFU) in top decays, applicable to top pair production at colliders. Our proposal exploits information in kinematic distributions and mostly hinges on data-driven techniques, thus having
Rare (t -> c g g) decay can only appear at loop level in the Standard Model (SM), and naturally they are strongly suppressed. These flavor changing decays induced by the mediation of spin-0 and spin-2 unparticles, can appear at tree level in unpartic
The rare top quark decays mediated by a new neutral massive gauge boson that is predicted in models with extended gauge symmetries are studied. We focus on the processes $tto cV, uV$ induced at the one loop level, where $V =gamma, g$, by considering
The recently observed mass difference of the $D^0-overline{D^0}$ mixing is used to predict the branching ratios of the rare top quark decays $tto ugamma$ and $tto ug$ in a model independent way using the effective Lagrangian approach. It is found tha
CP4 3HDM is a unique three-Higgs-doublet model equipped with a higher-order CP symmetry in the scalar and Yukawa sector. Based on a single assumption (the minimal model with a CP-symmetry of order 4 and no accidental symmetry), it leads to a remarkab