ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavor violation in chromo- and electromagnetic dipole moments induced by $Z^prime$ gauge bosons and a brief revisit of the Standard Model

107   0   0.0 ( 0 )
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف J. I. Aranda




اسأل ChatGPT حول البحث

The electromagnetic dipole moments of the tau lepton and the chromoelectromagnetic dipole moments of the top quark are estimated via flavor-changing neutral currents, mediated by a new neutral massive gauge boson. We predict them in the context of models beyond the Standard Model with extended current sectors, in which simple analytic expressions for the dipole moments are presented. For the different $Z^prime$ gauge boson considered, the best prediction for the magnetic dipole moment of the tau lepton, $|a_tau|$, is of the order of $10^{-8}$, while the highest value for the electric one, $|d_tau|$, corresponds to $10^{-24}$ $e,$cm; our main result for the chromomagnetic dipole moment of the top quark, $|hat{mu}_t|$, is $10^{-6}$, and the value for the chromoelectric one, $|d_t|$, can be as high as $10^{-22}$ $e,$cm. We compare our results, revisiting the corresponding Standard Model predictions, in which the chromomagnetic dipole moment of the top quark is carefully evaluated, finding explicit imaginary contributions.

قيم البحث

اقرأ أيضاً

The rare top quark decays mediated by a new neutral massive gauge boson that is predicted in models with extended gauge symmetries are studied. We focus on the processes $tto cV, uV$ induced at the one loop level, where $V =gamma, g$, by considering different extended models. It is found that, within a broad range of mass of the new neutral gauge boson, the models predict branching ratios for the decays in study that are competitive with respect to the corresponding branching ratios in the standard model. In order to establish bound on our branching ratios, we consider the recent experimental bounds as $m_{Z^prime}geq$ 3.8-4.5 TeV, depending on the model, which also impose restrictions on our calculation. Even in this case, the resulting branching ratios are of the same order of magnitude as that predicted by the standard model. It should be noted that for the case of two models studied here, since no experimental bound exists to compare with, the results could be important, as they are, in the best of cases, two orders of magnitude larger than the predicted by the standard model.
177 - Martin Jung 2016
Electric dipole moments and charged-lepton flavour-violating processes are extremely sensitive probes for new physics, complementary to direct searches as well as flavour-changing processes in the quark sector. Beyond the smoking-gun feature of a pot ential significant measurement, however, it is crucial to understand their implications for new physics models quantitatively. The corresponding multi-scale problem of relating the existing high-precision measurements to fundamental parameters can be approached model-independently to a large extent; however, care must be taken to include the uncertainties from especially nuclear and QCD calculations properly.
We study $Z$ phenomenology at hadron colliders in an $U(1)$ extended MSSM. We choose a $U(1)$ model with a secluded sector, where the tension between the electroweak scale and developing a large enough mass for $Z$ is resolved by incorporating three additional singlet superfields into the model. We perform a detailed analysis of the production, followed by decays, including into supersymmetric particles, of a $Z$ boson with mass between 4 and 5.2 TeV, with particular emphasis on its possible discovery. We select three different scenarios consistent with the latest available experimental data and relic density constraints, and concentrate on final signals with two leptons, four leptons and six leptons. Including the SM background from processes with two, three or four vector bosons, we show the likelihood of observing a $Z^prime$ boson is not promising for the HL-LHC at 14 TeV. While at 27 and 100 TeV, the situation is more optimistic, and we devise specific benchmark scenarios which could be observed.
The off-shell anomalous chromomagnetic dipole moment of the standard model quarks ($u$, $d$, $s$, $c$ and $b$), at the $Z$ gauge boson mass scale, is computed by using the $overline{textrm{MS}}$ scheme. The numerical results disagree with all the pre vious predictions reported in the literature and show a discrepancy of up to two orders of magnitude in certain situations.
While charged lepton flavor violation (cLFV) with taus is often expected to be largest in many extensions of the Standard Model (SM), it is currently much less constrained than cLFV with electrons and muons. We study the sensitivity of the LHeC to $e $-$tau$ (and $e$-$mu$) conversion processes $p e^- to tau^- + j$ (and $p e^- to mu^- + j$) mediated by a $Z$ with flavor-violating couplings to charged leptons in the $t$-channel. Compared to current tests at the LHC, where cLFV decays of the $Z$ (produced in the s-channel) are searched for, the LHeC has sensitivity to much higher $Z$ masses, up to O(10) TeV. For cLFV with taus, we find that the LHeC sensitivity from the process $p e^- to tau^- + j$ can exceed the current limits from collider and non-collider experiments in the whole considered $Z$ mass range (above $500$ GeV) by more than two orders of magnitude. In particular for extensions of the SM with a heavy $Z$, where direct production at colliders is kinematically suppressed, $e-tau$ conversion at LHeC provides an exciting new discovery channel for this type of new physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا