ﻻ يوجد ملخص باللغة العربية
We investigate systematically the quark-hadron mixed phase in dense stellar matter, and its influence on compact star structures. The properties of quark matter and hadronic matter are fixed based on various model predictions. Beside adopting constant values, the surface tension $Sigma$ for the quark-hadron interface is estimated with the multiple reflection expansion method and equivparticle model. To fix the structures of quark-hadron pasta phases, a continuous dimensionality of the structure is adopted as proposed by Ravenhall, Pethick, and Wilson. The corresponding properties of hybrid stars are then obtained and confronted with pulsar observations. It is found that the correlation between radius and tidal deformability in traditional neutron stars preserves in hybrid stars. For those permitted by pulsar observations, in almost all cases the quark phase persists inside the most massive compact stars. The quark-hadron interface plays an important role on hybrid star structures once quark matter emerges. The surface tension $Sigma$ estimated with various methods increases with density, which predicts stiffer EOSs for the quark-hadron mixed phase and increases the maximum mass of hybrid stars. The EOSs of hybrid star matter are well constrained at densities $nlesssim 0.8$ fm${}^{-3}$, while larger uncertainty is expected at higher densities.
We study the hadron-quark phase transition in the interior of hot protoneutron stars, combining the Brueckner-Hartree-Fock approach for hadronic matter with the MIT bag model or the Dyson-Schwinger model for quark matter. We examine the structure of
We study the hadron-quark mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron-star matter as a ternary system, the Gibbs
The performed systematic meta-analysis of the quality of data description (QDD) of existing event generators of nucleus-nucleus collisions allows us to extract a very important physical information. Our meta-analysis is dealing with the results of 10
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quar
We study quark-hadron phase transition at finite temperature with zero net baryon density by the Nambu-Jona-Lasinio model for interacting quarks in uniform background temporal color gauge fields. At low temperatures, unphysical thermal quark-antiquar