ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of pions on the hadron-quark phase transition

252   0   0.0 ( 0 )
 نشر من قبل Odilon Louren\\c{c}o
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.



قيم البحث

اقرأ أيضاً

155 - Kanako Yamazaki , T. Matsui 2012
We study quark-hadron phase transition at finite temperature with zero net baryon density by the Nambu-Jona-Lasinio model for interacting quarks in uniform background temporal color gauge fields. At low temperatures, unphysical thermal quark-antiquar k excitations which would appear in the mean field approximation, are eliminated by en- forcing vanishing expectation value of the Polyakov-loop of the background gauge field, while at high temperatures this expectation value is taken as unity allowing thermal excitations of free quarks and antiquarks. Mesonic excitations in the low temperature phase appear in the correlation energy as contributions of collective excitations. We describe them in terms of thermal fluctuations of auxiliary fields in one-loop (Gaus- sian) approximation, where pions appear as Nambu-Goldstone modes associated with dynamical symmetry breaking of the chiral symmetry in the limit of vanishing bare quark masses. We show that at low temperatures the equations of state reduces to that of free meson gas with small corrections arising from the composite nature of mesons. At high temperatures, all these collective mesonic excitations melt into continuum of quark anti-quark excitations and mesonic correlations gives only small contributions the pressure of the system.
We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the appropriate energy dens ities (or baryon densities) and temperatures are reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh$-$Plesset equation which governs the dynamics of a relativistic spherical bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.
We investigate systematically the quark-hadron mixed phase in dense stellar matter, and its influence on compact star structures. The properties of quark matter and hadronic matter are fixed based on various model predictions. Beside adopting constan t values, the surface tension $Sigma$ for the quark-hadron interface is estimated with the multiple reflection expansion method and equivparticle model. To fix the structures of quark-hadron pasta phases, a continuous dimensionality of the structure is adopted as proposed by Ravenhall, Pethick, and Wilson. The corresponding properties of hybrid stars are then obtained and confronted with pulsar observations. It is found that the correlation between radius and tidal deformability in traditional neutron stars preserves in hybrid stars. For those permitted by pulsar observations, in almost all cases the quark phase persists inside the most massive compact stars. The quark-hadron interface plays an important role on hybrid star structures once quark matter emerges. The surface tension $Sigma$ estimated with various methods increases with density, which predicts stiffer EOSs for the quark-hadron mixed phase and increases the maximum mass of hybrid stars. The EOSs of hybrid star matter are well constrained at densities $nlesssim 0.8$ fm${}^{-3}$, while larger uncertainty is expected at higher densities.
We study the hadron-quark mixed phase in protoneutron stars, where neutrinos are trapped and lepton number becomes a conserved quantity besides the baryon number and electric charge. Considering protoneutron-star matter as a ternary system, the Gibbs conditions are applied together with the Coulomb interaction. We find that there no crystalline (pasta) structure appears in the regime of high lepton-number fraction; the size of pasta becomes very large and the geometrical structure becomes mechanically unstable due to the charge screening effect. Consequently the whole system is separated into two bulk regions like an amorphous state, where the surface effect is safely neglected. There, the local charge neutrality is approximately attained, so that the equation of state is effectively reduced to the one for a binary system. Hence, we conclude that there is no possibility for the density discontinuity to appear in protoneutron-star matter, which is a specific feature in a pure system. These features are important when considering astrophysical phenomena such as supernova explosions or radiation of the gravitational wave from protoneutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا