ﻻ يوجد ملخص باللغة العربية
We study quark-hadron phase transition at finite temperature with zero net baryon density by the Nambu-Jona-Lasinio model for interacting quarks in uniform background temporal color gauge fields. At low temperatures, unphysical thermal quark-antiquark excitations which would appear in the mean field approximation, are eliminated by en- forcing vanishing expectation value of the Polyakov-loop of the background gauge field, while at high temperatures this expectation value is taken as unity allowing thermal excitations of free quarks and antiquarks. Mesonic excitations in the low temperature phase appear in the correlation energy as contributions of collective excitations. We describe them in terms of thermal fluctuations of auxiliary fields in one-loop (Gaus- sian) approximation, where pions appear as Nambu-Goldstone modes associated with dynamical symmetry breaking of the chiral symmetry in the limit of vanishing bare quark masses. We show that at low temperatures the equations of state reduces to that of free meson gas with small corrections arising from the composite nature of mesons. At high temperatures, all these collective mesonic excitations melt into continuum of quark anti-quark excitations and mesonic correlations gives only small contributions the pressure of the system.
We extend our previous study of the quark-hadron phase transition at finite temperatures with zero net baryon density by two flavor Nambu-Jona-Lasinio model with Polyakov loop to the three flavor case in a scheme which incorporates flavor nonet pseud
We study the quark-hadron phase transition by using a three flavor Nambu-Jona-Lasinio model with the Polyakov loop at zero chemical potential, extending our previous work with two flavor model. We show that the equation of state at low temperatures i
The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primaryobjectives for the upcoming FAIR accelerator. We model the transition between
In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quar
We study the nucleation of a quark gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at FAIR and NICA. When the appropriate energy dens