ﻻ يوجد ملخص باللغة العربية
Let $H^4$ denote the hyperbolic four-space. Given a bordered Riemann surface, $M$, we prove that every smooth conformal superminimal immersion $overline Mto H^4$ can be approximated uniformly on compacts in $M$ by proper conformal superminimal immersions $Mto H^4$. In particular, $H^4$ contains properly immersed conformal superminimal surfaces normalised by any given open Riemann surface of finite topological type without punctures. The proof uses the analysis of holomorphic Legendrian curves in the twistor space of $H^4$.
Let $Sigma$ be a $k$-dimensional complete proper minimal submanifold in the Poincar{e} ball model $B^n$ of hyperbolic geometry. If we consider $Sigma$ as a subset of the unit ball $B^n$ in Euclidean space, we can measure the Euclidean volumes of the
We prove that the Koebe circle domain conjecture is equivalent to the Weyl type problem that every complete hyperbolic surface of genus zero is isometric to the boundary of the hyperbolic convex hull of the complement of a circle domain. It provides
We give a different formulation for describing maximal surfaces in Lorentz-Minkowski space, $mathbb{L}^3$, using the identification of $mathbb L^3$ with $mathbb Ctimes mathbb R$. Further we give a different proof for the singular Bjorling problem for
Given a 2-manifold, a fundamental question to ask is which groups can be realized as the isometry group of a Riemannan metric of constant curvature on the manifold. In this paper, we give a nearly complete classification of such groups for infinite-g
We recall fundamental aspects of the pluriclosed flow equation and survey various existence and convergence results, and the various analytic techniques used to establish them. Building on this, we formulate a precise conjectural description of the l