ﻻ يوجد ملخص باللغة العربية
We recall fundamental aspects of the pluriclosed flow equation and survey various existence and convergence results, and the various analytic techniques used to establish them. Building on this, we formulate a precise conjectural description of the long time behavior of the flow on complex surfaces. This suggests an attendant geometrization conjecture which has implications for the topology of complex surfaces and the classification of generalized Kahler structures.
We give a classification of compact solitons for the pluriclosed flow on complex surfaces. First, by exploiting results from the Kodaira classification of surfaces, we show that the complex surface underlying a soliton must be Kahler except for the p
In prior work the authors introduced a parabolic flow of pluriclosed metrics. Here we give improved regularity results for solutions to this equation. Furthermore, we exhibit this equation as the gradient flow of the lowest eigenvalue of a certain Sc
We show that the existence of a left-invariant pluriclosed Hermitian metric on a unimodular Lie group with a left-invariant abelian complex structure forces the group to be $2$-step nilpotent. Moreover, we prove that the pluriclosed flow starting fro
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
Hermitian, pluriclosed metrics with vanishing Bismut-Ricci form give a natural extension of Calabi-Yau metrics to the setting of complex, non-Kahler manifolds, and arise independently in mathematical physics. We reinterpret this condition in terms of