ﻻ يوجد ملخص باللغة العربية
We investigate the quantum dynamics of Two-Level Systems (TLS) in glasses at low temperatures (1 K and below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, we derive analytically the explicit form of the interactions among TLSs, and of the dissipation terms. We find that the unitary dynamics of the system shows clear signatures of Many-Body Localization physics. We study numerically the time behavior of the concurrence, which measures pairwise entanglement also in non-isolated systems, and show that it presents a power-law decay both in the absence and in the presence of dissipation, if the latter is not too large. These features can be ascribed to the strong, long-tailed disorder characterizing the distributions of the model parameters. Our findings show that assuming ergodicity when discussing TLS physics might not be justified for all kinds of experiments on low-temperature glasses.
At long times residual couplings to the environment become relevant even in the most isolated experiments, creating a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a c
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the contex
Many-body localized (MBL) systems do not approach thermal equilibrium under their intrinsic dynamics; MBL and conventional thermalizing systems form distinct dynamical phases of matter, separated by a phase transition at which equilibrium statistical
We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic spin-$1/2$ Heisenberg chains with binary disorder. Starting from the Neel state, we analyze the decay of antiferromagnetic order $m_s(t)$ a
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed, coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows