ﻻ يوجد ملخص باللغة العربية
Twisted graphene multilayers have demonstrated to yield a versatile playground to engineer controllable electronic states. Here, by combining first-principles calculations and low-energy models, we demonstrate that twisted graphene trilayers provide a tunable system where van Hove singularities can be controlled electrically. In particular, it is shown that besides the band flattening, bulk valley currents appear, which can be quenched by local chemical dopants. We finally show that in the presence of electronic interactions, a non-uniform superfluid density emerges, whose non-uniformity gives rise to spectroscopic signatures in dispersive higher energy bands. Our results put forward twisted trilayers as a tunable van der Waals heterostructure displaying electrically controllable flat bands and bulk valley currents.
We study the symmetries of twisted trilayer graphenes band structure under various extrinsic perturbations, and analyze the role of long-range electron-electron interactions near the first magic angle. The electronic structure is modified by these in
Motivated by recent experiments indicating strong superconductivity and intricate correlated insulating and flavor-polarized physics in mirror-symmetric twisted trilayer graphene, we study the effects of interactions in this system close to the magic
It has recently been shown that superconductivity in magic-angle twisted trilayer graphene survives to in-plane magnetic fields that are well in excess of the Pauli limit, and much stronger than the in-plane critical magnetic fields of magic-angle tw
We show that the recently observed superconductivity in twisted bilayer graphene (TBG) can be explained as a consequence of the Kohn-Luttinger (KL) instability which leads to an effective attraction between electrons with originally repulsive interac
Moire quantum matter has emerged as a novel materials platform where correlated and topological phases can be explored with unprecedented control. Among them, magic-angle systems constructed from two or three layers of graphene have shown robust supe